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Human-Centric Behavior Description in Videos: New
Benchmark and Model
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Abstract—In the domain of video surveillance, describing
the behavior of each individual within the video is becoming
increasingly essential, especially in complex scenarios with multiple
individuals present. This is because describing each individual’s
behavior provides more detailed situational analysis, enabling
accurate assessment and response to potential risks, ensuring
the safety and harmony of public places. Currently, video-level
captioning datasets cannot provide fine-grained descriptions for
each individual’s specific behavior. However, mere descriptions
at the video-level fail to provide an in-depth interpretation
of individual behaviors, making it challenging to accurately
determine the specific identity of each individual. To address
this challenge, we construct a human-centric video surveillance
captioning dataset, which provides detailed descriptions of the
dynamic behaviors of 7,820 individuals. Specifically, we have
labeled several aspects of each person, such as location, clothing,
and interactions with other elements in the scene, and these people
are distributed across 1,012 videos. Based on this dataset, we can
link individuals to their respective behaviors, allowing for further
analysis of each person’s behavior in surveillance videos. Besides
the dataset, we propose a novel video captioning approach that
can describe individual behavior in detail on a person-level basis,
achieving state-of-the-art results.

Index Terms—Human-centric caption, Behavior description,
Deformable transformer, Video anomaly detection.

I. INTRODUCTION

W ITH the rapid development of security technology, vi-
sion applications based on video surveillances have be-

come the focus of many scholars and the industrial commu-
nity [1]. So far, research and datasets related to surveillance
videos mainly focus on anomaly detection [2], [3], [4], [5], [6],
[7], [8], [9], [10]. Undoubtedly, this is an important research
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Fig. 1. This is an example from the UCF-crime captioning dataset we col-
lected. To facilitate in-depth research, we annotated the bounding boxes for the
first frame in which each individual appears and recorded the time intervals of
their appearance and disappearance in the captions, such as [9.15, 27.25] and
[10.79, 22.94]. In these intervals, the first number in each bracket represents
the time stamp at which the individual appears in the video, while the second
number indicates the time stamp of their disappearance. Additionally, we pro-
vided objective descriptions of the behavior of each individual appearing in our
dataset.

field; however, it overlooks some more complex scenarios. For
example, in the real world, we need not only to detect abnor-
mal events but also to analyze individual abnormal behaviors
in surveillance videos [11], [12] to prevent the occurrence of
abnormal events or stop ongoing criminal activities from wors-
ening. Existing research does not fully encompass these sce-
narios because they demand a human-centric behavioral video
captioning dataset to describe individuals, aiding the analysis of
individual behaviors, a simple example of which is illustrated in
Fig. 1. Currently available datasets, as shown in Fig. 2, mainly
describe entire videos or divide videos into several events for
description, failing to meet this demand. Obtaining this data re-
quires a large amount of human resources, posing significant
challenges in data collection.

To address this issue, we propose a human-centric behav-
ioral video captioning dataset: the UCF-crime captioning dataset
(UCCD) as shown in Fig. 1. The UCCD dataset includes 1,012
videos and descriptions of the behavior of 7820 individuals, cov-
ering various scenarios, including normal and abnormal events.
It not only solves the problem of analyzing individual behaviors
in surveillance videos but also contains some unique features.
For each individual in a video, we detect them in the frame
where they first appear and mark them with different colored
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Fig. 2. The figure are respectively examples of the video caption, dense video caption, and UCF-crime caption. The video caption, which was proposed first, is
a description of the video. The dense video caption divides a video into several time frames, assigning temporal segmentation to events, and then describing each
event. The UCF-crime caption identifies the time period when a person appears and disappears, and describes the behavior of each person within this period.

Fig. 3. Subfigure (a) and (b) are videos under different scenarios. In both
videos, different individuals are marked in sequence of appearance with vivid
yellow, sky blue, emerald green, purple, etc.

bounding boxes, tracking them until they disappear. Fig. 3 rep-
resents an example of the color of the boundary boxes appearing
in the same order in different videos. This not only enhances the
captioning task but also provides a more diversified dataset for
research.

Based on the rich annotation information of our dataset, we
propose a human-centric video captioning method. This method
extracts frame and human features from the deformable trans-
former and generates a caption for each individual’s behavior
in the video through the localization head and captioning head.
By introducing a module for person detection and tracking, our
method can accurately divide the video into different segments
according to different people, thereby fully understanding the
video content while avoiding information omission and repeated
caption generation caused by unreliable estimates of the number
of people.

The contributions of this paper are three-fold:

• We construct a human-centric video surveillance captioning
dataset across 1,012 videos, detailing the dynamic behaviors of
7,820 individuals. Specifically, we label various aspects such as
location, clothing, and interactions with other elements in the
scene, greatly enriching the comprehension of human interac-
tions in complex scenarios.

• To the best of our knowledge, we first propose the video
surveillance captioning task, enabling the understanding of hu-
man actions in videos and the output of descriptions of human
behavior, marking a novel direction in the field of video surveil-
lance.

• We propose a novel video captioning approach that is de-
signed on a person-level basis, achieving state-of-the-art results.

The rest of our paper is organized as follows: In Section II,
we introduce the relevant work concerning video captioning
datasets, video captioning methods, and video anomaly detec-
tion. In Section III, we introduce the UCCD dataset. In Section
IV, we propose a new method for captioning individual behav-
ior in video surveillance s. In Section V, we validate that our
proposed method is superior to existing methods, emphasizing
the value of the UCCD dataset in the development of advanced
video captioning and surveillance technologies. In Section VI,
we conclude the paper.

II. RELATED WORK

Video Captioning Datasets: In recent years, numerous
datasets have been compiled in the field of video captioning [13],
[14], [15], [22], [23], [24]. These datasets vary in size, scope,
and focus, but all provide valuable data for training and eval-
uating video captioning models. For example, the Microsoft
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Research Video Description Dataset (MSR-VTT) [13] offers
a large-scale video dataset to researchers. It includes about
10,000 video clips and 200,000 textual descriptions, covering
approximately 200 categories, sourced from online video shar-
ing platforms. Similarly, the HowTo100 M dataset [14] provides
around 1.36 million YouTube videos with their corresponding
spoken descriptions, catering to approximately 1.3 billion video
clips, primarily aimed at facilitating how-to tasks such as ac-
tion recognition, object recognition, and scene recognition. The
Microsoft Video Description Corpus (MSVD) [15] offers about
2,000 YouTube short videos with multilingual descriptions. The
WebVid dataset [16] contains approximately 500,000 videos
scraped from the internet along with their annotations. The bilin-
gual VATEX dataset [17] encompasses around 41,250 videos.
The TGIF dataset [18] covers about 100,000 GIF animations
with their English descriptions. The TV show Clip Captioning
Dataset (TVC) [19] is a video captioning dataset that includes
around 15,000 TV show clips with their descriptions. Beyond
the realm of vision, the VALOR-1 M dataset developed by Chen
et al. [20] comprises 1 million video clips from AudioSet [21],
each paired with annotated audiovisual captions.

ActivityNet Captions [22] is another dataset, comprising ap-
proximately 20,000 YouTube videos along with their linguistic
descriptions. This dataset particularly emphasizes the descrip-
tion of the temporal context of videos [23]. In a similar vein,
the YouCook2 dataset [24] specializes in cooking videos, con-
taining around 2,000 YouTube videos related to cooking, each
accompanied by event-level descriptions. On a different note, the
UCF-crime dataset, constructed by Sultani et al. [5], focuses on
real-world surveillance footage. It consists of 1,900 videos that
capture 13 types of anomalous events, such as abuse, burglary,
and explosions. Although this dataset includes annotations spec-
ifying the types of anomalies, its primary application has been
in anomaly detection. It falls short for more intricate multimodal
learning tasks, such as moment retrieval and video captioning. To
bridge this gap, Yuan et al. [25] enriched the UCF-Crime dataset
by providing more comprehensive annotations for 1,854 of its
videos. This effort led to the creation of the UCF-Crime Annota-
tion (UCA), which encompasses detailed annotations regarding
the content and timing of the events depicted in the videos.

Existing datasets such as MSR-VTT [13], HowTo100M [14],
MSVD [15], WebVid [16], VATEX [17], TGIF [18], and
TVC [19] primarily provide video-level descriptions. In con-
trast, ActivityNet Captions [22], YouCook2 [24] and UCA [25]
are dense video caption datasets, segmenting a single video into
several events and describing each event at the event-level.

Compared to these existing datasets, our UCCD bears similar-
ity to dense video caption datasets but adopts a unique approach.
UCCD focuses on instance-level descriptions of individual be-
haviors within a video, segmenting the video based on individ-
uals and providing detailed descriptions of the behavior of each
person. The rationale for constructing UCCD is that existing
video-level and event-level descriptions are insufficient to in-
tricately portray the actions of each individual in a video, thus
making it challenging to accurately identify bystanders, victims,
or perpetrators in video surveillance. Such granular descriptions

are essential for a deeper understanding and analysis of video
content.

Video Captioning Methods: In the realm of urban surveillance,
significant advancements have been made in action recognition,
object tracking, and video captioning. Krishna et al. [22] pio-
neered the multifaceted task of video captioning with a dense
model, integrating a multi-scale proposal [26] module for lo-
calization and an attention-driven Long Short-Term Memory
(LSTM) for context-aware caption generation [27] [28]. This in-
novation has sparked further developments, such as the research
by Ghaderi et al. [29] introduced a temporal-spatial attention
module to improve the accuracy of action recognition. In con-
trast, Wang et al. [30] presented a comprehensive multi-stage
framework that prioritizes precise action identification. The ex-
ploration of synergies between video captioning sub-tasks has
also provided valuable insights. For example, Li et al. [31] in-
troduced a proxy task to predict language rewards of generated
sentences, optimizing the localization module. In a similar vein,
Wang et al. [32] presented PDVC, a model that capitalizes on
inter-task interactions by sharing intermediate features. Building
on these advances, we propose a novel task: generating sequen-
tial captions for each individual throughout a video, thereby
unifying the fields of action recognition, object tracking, and
video captioning into a holistic, individual-centric approach.

Video Anomaly Detection: Video Anomaly Detection (VAD)
refers to the identification and detection of events deviating
from normal behaviors, widely applied in video surveillance
scenarios. Depending on the developmental stages of the algo-
rithms, they can be classified into three categories: traditional
machine learning methods, hybrid methods of traditional ma-
chine learning and deep learning, and deep learning methods.
Most studies employ traditional handcrafted features, such as
histogram of oriented gradients (HOG) [33], histogram of op-
tical flow (HOF) [34], local binary pattern (LBP) [35], etc., to
represent crowd appearance and motion information, then de-
tect anomalies using conventional machine learning techniques.
Given that deep features exhibit stronger descriptive ability than
handcrafted features, during the hybrid phase, algorithms use
deep features to replace handcrafted ones, followed by anomaly
detection using traditional machine learning methods. Discrim-
ination models that saw significant advancements during this
stage mainly include point models, and applications focused
primarily on cluster discrimination [36], [37], [38], reconstruc-
tion discrimination [39], [40], and others [41]. In the phase of
deep learning methods, algorithms combine feature extraction
steps with model training steps, conducting anomaly detection
through end-to-end methods [6], [42], [43], [44], [45], [46], [47].
Currently, video anomaly detection faces multiple challenges,
such as the vagueness in anomaly event definition, the lack of
clear delineation between normal and abnormal samples [48],
and the scene-dependence of anomaly event definition [49]. The
same event under different scenes may present different anoma-
lous attributes. In response to these issues, we propose a new
task, which includes captioning videos under normal and abnor-
mal scenarios, offering a new foundation and direction for video
anomaly detection.
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Fig. 4. Statistical information on normal and anomaly scene data, caption
length, number of people appearing in each video, and distribution of video
durations.

III. DATASET

In this section, we provide the UCF-crime captioning dataset,
focusing on the data collection process and annotations. The
UCF-crime dataset serves as the foundation for our work, where
we have augmented it with detailed captions for each individual.

As shown in Fig. 4, we conducted a detailed analysis of the
UCCD dataset. In the dataset, the number of videos in normal
scenes far exceeds that of anomaly scenes. The length of the
captions mainly ranges from 30 to 45 words, with an average of
34 words per caption. The number of people appearing in the
videos is usually between 4 to 8, but in some abnormal scenes,
such as fights, road accidents, and attacks, the number of people
can increase, with some videos even featuring more than 30
people. Considering our task, the videos we selected are mostly
around 40 seconds in duration.

A. Data Collection

In our endeavor, we engaged 20 native speakers to manually
caption the videos, dedicating a substantial 200 hours to provide
targeted training prior to formal annotation. During the labeling
process, each video required simultaneous annotation by five
individuals. The specific tasks involve initially selecting videos
from the UCF-crime dataset that meet our project requirements.
The criteria for selection are as follows: the presence of individ-
uals in the video, a maximum duration of 10 minutes per video,
and relatively clear video quality to enable accurate observa-
tion of the individuals’ physical appearance, attire, and specific
actions. Such a selection process is critical to ensure that the
videos in our dataset possess the necessary detail and clarity for
accurate observation and analysis of the behaviors and charac-
teristics of the individuals, thereby enhancing the quality of the
dataset and the precision of the annotations. Subsequently, in
the selected videos, we detect the individuals present and mark

a bounding box around them in the first frame of their appear-
ance. They are then assigned sequential numbers based on the
order of their appearance. Following this, we provided an ob-
jective description of their actions throughout the process from
their appearance to their disappearance in the video. To ensure
the accuracy of the caption and the objectivity of the action de-
scription, once the five individuals had annotated each video,
a seasoned caption annotation expert would sift through their
work, selecting the caption most fitting to the setting. After over
5,000 hours of annotation, we ultimately collected 1,012 videos
with a total duration of 112 hours, containing a total of 7,820
captions, at a cost of approximately 6,017 dollars.

B. Annotation

1) Person Bounding Box Annotation: In each video, four cor-
ners of every person appearing in the first frame are manually
marked, and the smallest rectangular bounding box encompass-
ing all four corners is computed and stored. Since multiple in-
dividuals typically appear in most videos, to better discern the
order of each individual’s appearance, we have assigned a color
palette consisting of 30 different colors to the bounding boxes.
This way, the sequence of appearances of different individuals
within the same video is noted according to the color palette, and
the sequence of individuals appearing in different videos em-
ploys the same color scheme. We have invested 300 man-hours
in completing this phase of annotation.

2) Captioning Individual Actions: The most labor-intensive
aspect of our annotation process pertains to the captioning of in-
dividual actions. Given that numerous individuals appear within
a single video, meticulous descriptions of each person’s actions
necessitate multiple video reviews, which is further compli-
cated by the provision of bounding boxes for only the initial
appearance frame of each individual. The captioning of each
individual’s actions commences from their first appearance-the
frame marked with a bounding box and concludes when they
vanish from the video. The content of each caption primarily
consists of the scene in which the individual is located, their
attire, a fine-grained objective description of their actions, and
interactions with other individuals within the video. Generally,
the length of a caption ranges between 15 to 45 words, but for
extended videos, this can increase to approximately 65 words.
Among all depicted actions, the most frequently occurring verbs
include “walk”, “turn”, and “look”. Given the prevalence of
anomalous behavior in the UCF-crime dataset, men are predomi-
nantly represented, with the most common scenes being “streets”
and “indoors”. All annotations are performed by trained native
speakers.

C. Comparison With Other Datasets

Table I compares our dataset, based on UCF-crime anno-
tations and centered around human behavior, with other cap-
tion datasets. We compare UCCD with existing video caption
datasets in several aspects: domain, video source, average time,
caption length, caption target, and target type. As can be seen
from the table, most videos are sourced from YouTube, while
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TABLE I
COMPARISON WITH OTHER DATASETS

ours originate from real-world video surveillance. Due to our
detailed, granular behavior descriptions of people, we have the
longest caption length. Furthermore, the target type of other
videos is generic events or actions, while ours is focused on pro-
viding detailed descriptions of individuals from multiple per-
spectives. Our dataset has certain unique features distinguishing
it from other datasets, and these are summarized below:

1) Data Source: Unlike datasets like MSR-VTT, MSVD,
ActivityNet Captions, etc., which are sourced from YouTube,
our dataset is based on UCF-crime. Notably, our dataset includes
a plethora of anomaly scene captions in addition to regular sce-
narios, setting it apart from conventional datasets.

2) Video Integrity: Our dataset provides an extensive video
surveillance scene, detailing individual behaviors throughout the
video with fine-grained descriptions. This is different from other
video caption datasets that typically provide descriptions for
short videos or carry out dense video captioning by breaking a
video into several segments. Thus, our dataset boasts superior
scene and temporal continuity.

3) Behavioral Complexity: In contrast to video captions in
normal scenarios like those in HowTo100M, YouCook2, and
other existing video caption datasets, our dataset includes de-
scriptions for various anomaly scenarios. These anomaly sce-
narios are known to entail more complex human behaviors, en-
hancing the richness and challenge of our dataset.

4) Annotation Challenge: Throughout the captioning pro-
cess, since only the bounding box of the first frame where a
person appears is provided, the annotator must constantly track
the individual and describe their interactions with others. This
enhances the difficulty of annotation, but simultaneously im-
proves the quality of the dataset.

In summary, our dataset excels in terms of data source, video
integrity, behavioral complexity, and annotation challenge. This
makes our dataset highly valuable to researchers.

IV. APPROACH

In this section, we introduce a video captioning algorithm
that takes advantage of the extensive annotations in our pro-
posed dataset, capable of accurately describing the behavior of
each individual appearing in the video. The details of our video
captioning algorithm will be elaborated in the following content.

A. Overall Framework

The introduced method, depicted in Fig. 5, consists of two pri-
mary components. The initial component deals with feature en-
coding; this process begins with frame extraction from the video,

followed by the utilization of pretrained visual models [50],
[51], [52] for frame-level feature extraction. The second stage
involves feeding the extracted features, along with their respec-
tive positional embeddings [53], into a deformable encoder [54].
Then the YOLOv7 [55] with StrongSORT [56] with OsNet [11]
is used to detect and track individuals in the video, cropping
the video during the time each individual appears and disap-
pears according to the bounding boxes and extracting frames.
The frames that contain only individual’s information are used
to extract features with the same pretrained visual models [50],
[51], [52], and the obtained features of each individual are input
into the deformable decoder [54] as a query.

The second component involves decoding, where the features
of the individuals in the video are extracted and combined with
the frame features in the encoder, before being placed into the
decoder. The decoder outputs the queried features [57] con-
nected to a localization head and a captioning head for gen-
erating each person’s caption. The loss function includes local-
ization loss and captioning loss, used respectively for calculat-
ing the timing of the appearance and disappearance of individ-
uals, and for comparing the generated captions with the real
captions.

B. Feature Encoding

Our initial step towards exploiting the comprehensive spatio-
temporal characteristics within a video is to utilize pretrained
visual models to perform feature extraction at the frame level.
We employ a consistent frame rate of 30 fps to uniformly sam-
ple frames from the video. Each frame, represented as ximg ∈
R3×H0×W0 , is processed through I3D to extract features rep-
resented as f ∈ RC×H×W , with our conventional values being
C = 1024 and H,W = H0/32,W0/32.

We handle the video as a series of frames, and for a temporal
sequence length of t, we achieve a set of frame features denoted
as Xf

1 , Xf
2 ,..., Xf

t , where Xf
i denotes the feature vector for the

ith frame. Following this, we employ a 1× 1 convolution to re-
duce the channel dimension from C to a smaller dimension d in
the high-level activation map f , generating a new feature map
z0 ∈ Rd×H×W . Given that the encoder expects a sequence as
input, we collapse the spatial dimensions of z0 into one dimen-
sion, forming a feature map of d×HW . Each layer within the
encoder is designed with a standard architecture, composed of
a multi-head self-attention module and a feed-forward network.
Since the transformer architecture is permutation-invariant, it is
supplemented with fixed positional encodings which are intro-
duced to the input of each attention layer.
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Fig. 5. The overall structure of our proposed model consists of three main components. The first component is feature extraction, in which we separately employ
the pretrained visual models to extract global and individual features. The second component is feature processing, where we use a deformable transformer to
concentrate attention on the times when individuals appear, thereby enhancing the performance of the model’s captioning. The final component consists of a
localization head and a captioning head, which generate the captions. The localization component is responsible for identifying the specific timestamps of the
appearances and disappearances of individuals. Concurrently, the captioning component, which includes elements like LSTM networks, facilitates the generation
of descriptive captions.

C. Person Feature Extraction

Our approach diverges from traditional video captioning
methods, which typically focus on depicting specific events.
Instead, our strategy centers on comprehensively narrating all
actions performed by participants in the video, requiring ex-
haustive feature extraction at the individual level. During the
detection phase, we use YOLOv7 with StrongSORT with Os-
Net [11] for detecting and tracking individuals. This algorithm
incorporates reid [58] capabilities, addressing issues such as los-
ing original identification recognition of the individual after in-
dividuals meet or reappear after a period of absence. We obtain
frames labeled with individual bounding boxes, denoted as Fi.
Subsequently, we segregate regions containing these bounding
boxes, yielding the set Ri. In order to more accurately capture
the actions of each participant during the interaction process
via features, we employ a frame feature extraction technique to
identify distinct attributes of each individual. We apply uniform
frame sampling, extracting 64 frames from each person, with
an input size of 224× 224, and then input them into I3D to
obtain individual features, ultimately generating the feature set
Xr

1 ,Xr
2 ,...,Xr

t . Upon completing the pooling process, we obtain
an output dimension of 1024× t. These extracted features are
then passed through a fully connected(FC) layer to be converted
into a compact 256-dimensional format. Each query stands for

a single individual’s features, and then these N distinct queries
are fed into the Transformer decoder’s multi-head self-attention
layer.

D. Decoding

The decoding network comprises three main components: a
Deformable Transformer Decoder, and two parallel heads - a
captioning head for generating captions, and a localization head
designed to predict human boundaries. The Deformable Trans-
former is an encoder-decoder architecture based on multi-scale
deformable attention (MSDAtt), which mitigates the slow con-
vergence problem of the self-attention in Transformer when pro-
cessing image feature maps, by attending to a sparse set of sam-
pling points around reference points. Given multi-scale feature
maps X , where X ∈ RC×H×W , a query element qj and a nor-
malized reference point pj ∈ [0, 1]2, MSDAtt outputs a context
vector [59] by the weighted sum of K sampling points across
feature maps at L scales.

The goal of the decoder is to query frame-level features of
human features under the condition of N human features qjNj=1

and their corresponding scalar reference points pj . It is worth
noting that qj is predicted by linear projection pj and using
a Sigmoid activation function. Human features and reference
points serve as initial guesses for human features and positions,
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and they interact with each other at each decoding layer. The
output query features and reference points are denoted as qj and
pj , respectively.

To distinguish characters with overlapping characteristics, a
localization head is trained, which performs box prediction and
binary classification for each unique character feature. Box pre-
diction aims to predict the 2D relative offset of ground truth seg-
ments, corresponding to specific reference points. The goal of
binary classification is to generate foreground confidence scores
for each character query. The mechanisms for box prediction
and binary classification are both facilitated by a multilayer per-
ceptron. As such, a set of tuples {tsj , tej , clocj }Nj=1 are obtained,
representing the start time, end time, and location of the de-
tected characters. Here, clocj represents the location confidence
of character query q̃j .

MSDAtt(qj , pj , X) =

L∑

l=1

K∑

k=1

AjlkWxl
p̃jlk

(1)

p̃jlk = φl(pj) + Δpjkl (2)

For creating descriptive content for video captions, a differ-
ent task setup than traditional methods [60] is adopted. A new
method is proposed, which uses LSTM hidden state hjt to pre-
dict the word wjt after applying a fully connected layer and
softmax activation, instead of inputting character-level represen-
tation qj into a standard LSTM at each timestamp. The standard
captioning model, considering only character-level representa-
tion qj lacks dynamic interaction between linguistic cues and
frame features. To rectify this, a mechanism based on soft atten-
tion, known as Deformable Soft Attention (DSA), is introduced.
This mechanism effectively enforces soft attention weights to
concentrate in a smaller region around the reference point. When
generating the t-th word wt, K sampling points are first created
on each f l using linguistic query hjt and character query qj ,
following (1), where hjt represents the hidden state within the
LSTM. Then, the K sampling points are considered as key val-
ues, and [hjt, qj] are considered as the query inside the soft at-
tention. Considering that sampling points are distributed around
reference point pj , the output feature zjt of DSA is constrained
within a relatively small region. LSTM takes concatenated con-
text features zjt, character query features qj , and previous word
{wj , t− 1} as input. By applying softmax activation to hjt, the
probability of the subsequent word wjt is obtained. As LSTM
proceeds, a sentence Sj = wj1, . . ., wjMj is generated, where
Mj indicates the length of the sentence.

E. Loss Function

In the course of training, our model generates a set of actions
for N individuals, encompassing both location and description.
To align predicted events with actual data in the global scheme,
we employ the Hungarian algorithm as per [61] to determine the
optimal binary matching outcome. The matching cost is defined
as C = αgiouLgiou + αclsLcls, where Lgiou indicates the gen-
eralized IOU [62] between predicted and actual time segments,
while Lcls refers to the focal loss [63] between the predicted
classification score and actual data labels. In the cost ratio for

bipartite matching, we set αgiou : αcls = 2 : 1, highlighting the
greater importance of the generalized IOU loss relative to the
classification loss in the calculation of matching cost. The cho-
sen pairs are used to calculate the set prediction loss, which is a
weighted sum of gIOU loss, classification loss and caption loss:

L = βgiouLgiou + βclsLcls + βcapLcap (3)

Here, Lcap measures the cross-entropy between predicted
word probabilities and actual values, normalized by caption
length. The β represents the weights of various losses, such as
gIOU loss, classification loss, and caption loss. The loss ratio
βgiou : βcls : βcap = 2 : 1 : 1 clearly demonstrates the relative
importance of different types of losses in the overall loss func-
tion. Importantly, we adhere to [54], [61] in adding a prediction
head at every layer of the transformation decoder. The final loss
is the sum of the set prediction losses across all decoder layers.

V. EXPERIMENTS

In this section, we present the trial outcomes of our proposed
video captioning technique on our UCCD. This includes ab-
lation studies, comparative trials against both baseline methods
and the latest advancements in video captioning techniques. Ad-
ditionally, we conduct an evaluation of human performance to
gauge the potential of our dataset. For the sake of clarity, we
initially provide the evaluation procedures and details of imple-
mentation.

A. Evaluation Protocols and Implementation Details

The UCCD is randomly divided into training, validation,
and testing subsets. The training subset encompasses 584
videos with 4,014 captions, the validation subset contains 205
videos and 1,842 captions, and the testing subset includes 223
videos with 1,964 captions. In addition to the captions, each
video has time locations corresponding to the number of cap-
tions, denoting the time the person first appears in the video
in each caption. Our method’s captioning performance is eval-
uated using BLEU4 [64], METEOR [65], CIDER [66], and
ROUGE-L [67], calculating the average precision of matches
between the generated captions and the benchmark true cap-
tions at IOU thresholds 0.3, 0.5, 0.7, 0.9. However, these scor-
ers do not consider narrative quality or how well the generated
captions cover the entire video story. Hence, we further employ
SODA_c [68] for comprehensive evaluation. In addition to this,
for evaluating the accuracy of individual behavior descriptions,
we also relied on qualitative assessment. Specifically, we mea-
sured the accuracy of the captions through human evaluation. We
invited a group of 20 evaluators who assessed 20 randomly se-
lected videos and their corresponding captions from our UCCD
dataset. During the evaluation process, the evaluators focused on
how well the behavior descriptions in the captions matched the
actual behaviors observed in the videos. They were asked to rate
each caption in terms of its accuracy, relevance, and contextual
consistency on a scale of up to 100 points. This was to deter-
mine how accurately the captions reflected the individual behav-
iors in the videos. During the tracking and detection phase, we
experiment with the YOLOv5 with DeepSORT and YOLOv7
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Fig. 6. The figure shows the visualization results of video captioning. p1 and p2 represent two individuals generating two captions. Different colors indicate
different models. The horizontal line above represents the timeline, which allows for a more intuitive observation of the model’s localization performance.

with StrongSORT with OsNet methods. For UCF-crime cap-
tion, we tested our model using three distinct feature extraction
methods: C3D [50], I3D [51], and CLIP [52]. We used the C3D
pre-trained on Sports1M [69] to extract frame-level features. For
I3D, we used a model pre-trained on the Kinetics dataset [51].
For CLIP, we downloaded a pre-trained model released offi-
cially by OpenAI. We used a two-layer deformable transformer
with multi-scale (4-level) deformable attention. The deformable
transformer uses a hidden size of 512 in the MSDAtt layer and
2,048 in the feed-forward layer. After each person is detected
and tracked, their features are separately extracted using the
corresponding feature extraction method and fed as a query into
the deformable transformer. Finally, we employed an LSTM as
the caption generator with a hidden dimension of 512. We use
the Adam optimizer [70] with an initial learning rate of 5e-5,
with each mini-batch sized to one video. Two NVIDIA A100
GPUs facilitate the training process.

B. Comparison With State-of-The-Art Methods

Overall Introduction: Although specialized methods for an-
notating individual actions across diverse scenarios are limited,
we are dedicated to addressing this issue. In our approach, we
utilize the I3D model pre-trained on the Kinetics dataset to ex-
tract human behavioral features, as Kinetics is a large-scale hu-
man action video dataset that is more suitable for our task. We
employ YOLOv7 with StrongSORT with OsNet to detect and
track each individual’s features [71], using I3D to extract them,
and interact with the overall conditional features to enhance the
quality of individual subtitle generation [60]. As shown in Fig. 6,
we have visualized the subtitle results outputted by our model
and compared them with existing methods.

Method Comparison: We compared our algorithm with nine
leading technologies applied to the most commonly used
datasets across different scenarios, such as ActivityNet Cap-
tions, MSR-VTT, and VATEX. The results, as shown in Ta-
ble II, indicate that our algorithm outperforms the other nine
state-of-the-art methods, demonstrating our algorithm’s out-
standing performance. In terms of BLEU-4, CIDER, METEOR,
ROUGE-L metrics, we have respectively achieved improve-
ments of 4.2, 3.8, 3.6, and 1.3 over the current sota, highlight-
ing our method’s advantages in character positioning and action
description.

Reason Analysis: Currently, the cutting-edge technology for
dense video subtitling is Vid2Seq [72], and the most ad-
vanced methods for the MSR-VTT dataset include mPlug-2 [73],
VAST [74], GIT2 [75], VLAB [76], and VALOR [20], with
VALOR and VAST leading in the VATEX dataset. Next, we
analyze the reasons why these methods do not perform well
on the UCCD dataset. Vid2Seq [72] enhances the language
model through special time marking but performs poorly in
fine-grained description. mPlug-2 [73] resolves the entangle-
ment between video-text modalities but falls short in tracking
individuals. VAST [74] achieves state-of-the-art results in video
subtitling tasks but struggles to capture actions effectively. Sim-
ilarly, GIT2 [75] and VALOR [20] demonstrate strong general-
ization abilities in pre-training but face difficulties in extracting
individual actions. We also employed counters from MT [77],
BMT [78], PDVC [32] to distinguish different individuals in our
task, and the experimental results showed that their effects were
not as good as the detection and tracking of people in our meth-
ods. Therefore, the performance of these methods on the UCCD
dataset is not very satisfactory.
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TABLE II
COMPARE OUR MODEL WITH OTHER BASELINES AND VARIOUS INTERMEDIATE MODELS

TABLE III
EXPERIMENTAL RESULTS FOR VIDEO CAPTIONING IN DIFFERENT SCENARIOS

C. Anomalies Captioning

Regarding the peculiarities of our dataset, it is worth noting
that it is annotated based on the UCF-crime dataset, which is
divided into normal videos and videos showcasing anomaly sce-
narios. These comprise 13 types of real-life anomalies, namely,
abuse, arrests, arson, assaults, road accidents, burglary, explo-
sions, fights, robbery, shooting, theft, shoplifting, and vandalism.
These particular anomaly behaviors were chosen due to their
detrimental impact on public safety. To validate our method’s ca-
pacity to generate captions for human behavior under anomaly
scenarios, we proceeded to re-segment the UCCD. We desig-
nated all normal videos to the training set, amassing a total
of 630 videos, while all anomaly scenarios were allocated to
the validation set, accounting for 382 videos. As illustrated in
Table III, from our experimental results, in normal scenarios,
the various metrics have been improved by 10.1, 11.0, 10.9,
and 10.5, respectively, compared to the state-of-the-art methods
benchmarked on the VATEAX dataset. Even under anomaly sce-
narios, the metrics of our method have been increased by 10.6,
14.5, 14.4, and 11.0, respectively, achieving commendable re-
sults.

D. Person Tracking Detection

For the experiment of person tracking detection, we utilize
the pre-trained models YOLOv5 with DeepSORT and YOLOv7
with StrongSORT with OsNet on the COCO dataset to perform
human detection and tracking. Given that Yolov5 and Yolov7
are designed for multi-type object detection, whereas tracking
systems can only track one type of object, we limit the number
of detection types to a single class for tracking purposes, i.e.,
classes 1 for humans.

Upon detecting and tracking the presence of humans, the con-
tent within each person’s bounding box is cropped and saved as
a new video. The original frames are cropped based on each

individual’s bounding box and then saved directly to the cor-
responding videowriter. As each person’s bounding box size
varies, the resolution of each created video differs as well. To
maintain consistency in feature extraction, the methodology of
extracting individual features remains the same as that for global
feature extraction.

Based on the different feature extraction techniques employed
subsequently, the videos are resized to the corresponding reso-
lution. For instance, with C3D for feature extraction, the reso-
lution is set at 112× 112, with a frame rate of 30fps, and every
16 frames are selected as a person’s feature. When using I3D
for feature extraction, the resolution is 224× 224, with a frame
rate of 30fps, and every 64 frames are selected as a person’s
feature. When using CLIP for feature extraction, the resolution
is 224× 224, with a frame rate of 30fps, and every 40 frames
are chosen as a person’s feature.

Apart from these methods, we also tried two other techniques.
The first method involves cropping the content in the bounding
box of the first frame in which each person appears and then
performing feature extraction using the corresponding feature
extraction method. The second method involves encoding all
the locations where a person has been tracked into the model as
a query. Table IV displays the impact of different person tracking
detection algorithms on model performance.

E. Ablation Study

This section aims to assess the efficiency of the proposed ap-
proach and showcase the contributions of each component of our
suggested model towards the final performance. We depict the
performance of action captioning by comparing it with four in-
fluential ablation studies. For assessment, the generated caption
is evaluated using METEOR and SODA_c metrics, as detailed
in Table V.
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TABLE IV
RESULTS OF THE MODEL USING DIFFERENT PERSON TRACKING DETECTION ALGORITHMS

TABLE V
ABLATION STUDIES ON THE UCF-CRIME CAPTIONING DATASET VALIDATION SET

1) Tracking Detection: Our first experiment was focused on
examining the impact of person detection and tracking algo-
rithms on the performance of our model. The results indicate
that employing various methods for detecting, tracking, and
extracting features for each individual, along with the interac-
tion with global features, significantly affects the overall per-
formance of the model. Given that individuals in surveillance
videos often overlap during encounters and reappear frequently,
the performance of YOLOv5 with DeepSORT, which incorpo-
rates detection and tracking, is not as effective as YOLOv7 with
StrongSORT with OSNet. The latter maintains precise localiza-
tion and re-identification capabilities even in cases of person
overlap.

2) Transformer: Transitioning from a deformable trans-
former to a vanilla one also impacts the model’s perfor-
mance. We observed that incorporating locality into the
transformer effectively aids in the extraction of temporally-
sensitive features, which is crucial for localization-aware
tasks.

3) Localization Head: We further add a localization head in
our model, which has shown to improve the determination of the
start and end times of events. In other words, it accurately tracks
the appearance and disappearance times of each individual.

4) Captioning Head: Regarding caption generation, LSTM
is primarily employed, but we enhanced it by adding two dis-
tinct attention mechanisms. This addition helps LSTM in gener-
ating more accurate descriptions of human behavior. Our results
clearly show that focusing on a small segment around the propos-
als, instead of the entire video, significantly optimizes behavior
captioning.

5) Loss Function: In the ablation study shown in Table VI,
we conducted detailed tests on various components of the loss
function to assess their impact on the final model’s performance.
By comparing different loss weight ratios, we discovered that
these ratios significantly affect the model’s performance. Specif-
ically, the model performed best on multiple key performance
metrics when we used a ratio of 2:1:1.

TABLE VI
THE IMPACT OF THE WEIGHT OF EACH LOSS RATIO ON THE EXPERIMENTAL

RESULTS

TABLE VII
COMPARISON BETWEEN HUMAN EVALUATORS AND OUR METHOD

F. Human Performance Evaluation

In order to explore the complexity of our dataset and the
performance difference between human evaluators and our al-
gorithm, we conducted a human performance assessment on
our dataset. In this experiment, we randomly selected 10 videos
under anomaly scenarios, each video containing an average of
about 5 individuals, each appearing for a duration varying from 5
to 30 seconds. Three well-trained annotators participated in this
experiment, and their performances are displayed in Table VII.
According to the data from the table, the accuracy rate of human
annotators is on average 15% higher than that of our model. De-
spite human annotators providing precise descriptions, the time
cost is significantly high. Annotating each video requires an
average of 13 minutes per video, while our trained model can
generate captions within a few seconds.

VI. CONCLUSION

In this paper, we have gathered the UCF-crime captioning
dataset, the first of its kind, to our knowledge, that offers captions
for anomalous videos in real-life surveillance scenarios. We fur-
nish the bounding box for the first frame each individual appears
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in and proceed to provide an objective description of the person’s
entire behavior in the video. Consequently, our dataset can also
be applied to other vision tasks, such as action recognition and
anomalyity detection in videos. Moreover, during the captioning
of individuals, we have also included some information about
their interactions with other people; how to capture this infor-
mation is worthy of further exploration. In addition, we have
conducted thorough experiments to fully exploit the rich anno-
tations. Drawing on the abundant annotation data in our dataset,
we have proposed a novel method for captioning people’s be-
haviors in videos. This method can detect and track individuals
at every time point in the video and provide an objective de-
scription of their behaviors. Experimental results show that our
proposed method significantly outperforms five state-of-the-art
video captioning methods evaluated on our dataset.
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