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Abstract—An unmanned aerial vehicle (UAV) swarm is a
cluster system composed of multiple UAVs and is widely
used in military and civilian fields. The UAV swarm has
a large number of resources, complex functions, space-time
constraints, and task-driven characteristics. However, existing
UAV swarm task description methods are usually limited to
a specific task and cannot adapt to detailed descriptions of
dynamic and complex application scenarios. To this end, we
propose a UAV swarm application scenario model based on
meta-level theory. Specifically, we abstract three types of meta-
models from UAV application scenarios: mission meta-model,
resource meta-model, and constraint meta-model. Based on
this model, we design and implement a UAV swarm appli-
cation scenario modeling language (ASML) to support the
formal description and analysis of the model. Furthermore,
we define the conversion rules from ASML to timed automata.
We model a logistics handling application scenario and use the
model checking tool UPPAAL to verify the correctness of the
scenario.

Keywords–Unmanned aerial vehicle swarm; Application sce-
narios; Meta-level theory; Formal verification

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been widely used to
undertake some boring, repetitive, inconvenient, and dangerous
tasks. However, with the increasing diversification of UAV
missions, the capabilities of a single UAV make it difficult
to meet the needs of complex scenarios. Therefore, it has
promoted academic research on Unmanned Aerial Vehicles
Swarm (UAV Swarm) [1] technology. The concept of a UAV
swarm originates from the swarming behavior of organisms
and refers to a swarm system composed of multiple UAVs.
UAV swarms have high flexibility and adaptability and are
widely used in military and civilian fields. UAV swarms are
used in collaborative operations [2], [3] in the military field.
In the civilian field, it is widely used in search and rescue [4],
[5], logistics and transportation [6], traffic inspection [7], [8],
and other scenarios.
Existing research only focuses on specific mission scenarios,
such as only applicable to regional monitoring [9] or search
and rescue [10] mission scenarios. However, The widespread
application of UAV swarms makes them face more complex
scenarios, namely task diversification and environmental un-
certainty. Existing task modeling methods cannot achieve reuse

and accurately describe complex application scenarios when
dealing with diverse application scenarios.
We propose a general method for modeling UAV swarm
application scenarios to address this limitation. Specifically,
we apply meta-level theory to abstract UAV swarm application
scenarios into task, resource, and constraint meta-models. UAV
swarm application scenarios can be characterized by applying
meta-models to establish task, resource, and constraint models.
We formalize the metamodel into a modeling language and
define its lexical and syntactic rules. In addition, we convert
the modeling scenario into a UPPAAL (Developed jointly by
Uppsala University and Aalborg University) timed automata to
verify the correctness of the scenario. In summary, this paper
makes the following contributions:
• We propose a UAV swarm application scenario modeling

method based on meta-level theory. This modeling method
can accurately describe complex and diverse UAV swarm
application scenarios in detail.

• We design and implement a UAV swarm Application Sce-
nario Modeling Language (ASML). We have developed a
graphical tool interface that enables low-code and flexible
programming.

• We define the conversion rules from ASML to timed au-
tomata, which can realize the formal verification of the
constructed application scenarios.

• We verify the feasibility of the proposed modeling method
and language in a logistics handling scenario.

2. MODELING METHOD

2.1 Overview
In order to abstract and describe the UAV swarm application
scenario in detail, we adopt a method rooted in meta-level
theory to model the UAV swarm application scenario. Specif-
ically, as shown in Figure 1, we first summarize many UAV
swarm application scenario examples and abstract the UAV
swarm application scenario into three models: environment,
resources, and constraints. By extracting common features
between application scenarios, we establish a task meta-
model, a resource meta-model, and a constraint meta-model
to support the construction of application scenario models.
Metamodel [11] can be regarded as the ”model” of the model,
which can be used to define the model concept and create
corresponding elements for the model. The metamodel is
equivalent to the model’s template, and the model can be re-
garded as an instance of the metamodel. Through the template
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definitions and concepts provided by the metamodel, models
can be abstracted and interactive relationships between models
can be described, providing high scalability and flexibility. The
application scenario model ultimately consists of a task model,
a resource model, and a constraint model.
Moreover, existing Domain-Specific Languages (DSL) have
the characteristic of limited expression capabilities [12] and
cannot fully cover multi-scenario requirements such as tasks,
resources, and environmental constraints. Therefore, we pro-
pose and implement an application scenario modeling lan-
guage ASML for UAV swarms, aiming to provide a formal
description method for UAV swarm application scenarios and
represent the application scenario model in detail. At the
same time, to verify the established scenario’s correctness, we
convert the scenario model into a timed automaton and use
the model detection tool UPPAAL to verify the properties.

3
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Figure 1: Overview of UAV swarm scenario modeling

As shown in Formula 1, the scenario model is a triplet, in-
cluding Mission,Resource, and Constraint. The scenario
mission model describes the UAV’s target tasks in a specific
scenario. The resource model describes the capabilities of the
UAV’s resources during the execution of its mission. The
constraint model models the resource constraints and mission
area, weather, obstacles and other environmental factors to
enable the drone to better adapt to various environmental
conditions.

Scenario =< Mission,Resource, Constraint > (1)

2.2 Mission Model

In order to clearly and accurately define the mission infor-
mation in the mission meta-model, we use the 5W1H abstract
domain ontology and relationships. Laswell proposed the “5W
analysis method” [13], [14] and gradually formed a complete
“5W1H” model [15]. 5W1H has been used to model domain
ontologies conceptually [16]. Specifically, as shown in Fig-
ure 2, we abstract the UAV mission ontology elements from six
aspects: purpose (Why), execution body (Who), corresponding
location (Where), specific time (When), resource or event
(What) and action (How). In addition, we also extract the

mission status, mission relationship and terminal flags that
relate to each mission.

Target
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Figure 2: Mission metamodel element extraction model

The mission metamodel abstracts the common characteris-
tics between missions. As shown in Formula 2, the mission
metamodel is ultimately composed of 5-tuples, including
id,Name,Description,< Property >,< Include >. id
represents the identifier of the scenario mission, Name repre-
sents the name of the scenario mission, and Description rep-
resents the description of the scenario mission. < Property >
is a set that represents the set of all properties of the scenario
mission. As shown in the Formula 3, the property is a 9-
tuple that contains the properties corresponding to the mission.
< Include > indicates the number of lower-level tasks and
their corresponding IDs included in this layer of tasks. For
example, we divide scenario tasks into a task structure of up to
three levels: Mission, task, and subtask. A mission can include
one or more tasks, and a task can also contain one or more
subtasks.
Mission =< id,Name,Description,< Property >,

< Include >>
(2)

Property =< Type, State, T ime,Coord,Behavior,

Relationship,Requirement, Target, Terminal >
(3)

Below we discuss in detail the meaning of each element of
the task property:
Mission Type: The mission type indicates the level of the
task, which corresponds to mission, task or subtask. Mission
types can facilitate us to deal with the inclusion relationship
between tasks, clarify the corresponding type of tasks, and
distinguish whether the tasks are located in the terminal.
State: As shown in Formula 4, State represents the assignment
status of the task, and the values are Allocated, UnAllocated
and PartiallyAllocated one of the three states. Among them,
the status of the terminal task does not include partial alloca-
tion. The status of task allocation is bottom-up. The allocation
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status of terminal tasks or subtasks affects the allocation of
their parent tasks. Assume that the assignment status of the
task is State, and its variables can be non-terminal tasks and
Terminal tasks.

X ∈ {NonTerminal}, Y ∈ {Terminal}
State(X) ∈ {Allocated, UnAllocated,
PartiallyAllocated}
State(Y ) ∈ {Allocated, UnAllocated}

(4)

Time: Time represents the time information of
the mission. Formula 5 defines the constraint
relationship of task time. Time sub-elements include
StartT ime,EndT ime and EstimatedT ime. The default
value of the start time is the current time, and the value needs
to be greater than or equal to the current time. The end time
Tend of the same mission needs to be greater than or equal to
the start time Tstart. The estimated time Testimate needs to
be less than or equal to the difference between the end time
Tend and the start time Tstart.

Time =< StartT ime,EndT ime,
EstimatedT ime >
Tend ≥ Tstart ≥ Tcurrent

Testimate ≤ Tend − Tstart

(5)

Coord: Coord consists of two triples, including the longitude,
latitude and altitude information of the enter and leave co-
ordinate points during task execution. The enter coordinate
point is the starting position where the UAV starts to perform
the mission, and the UAV enters the designated mission area
at this point. The leave coordinate point represents the end
position of the UAV leaving the mission area after completing
the mission.
Behavior: Behavior represents the mission behavior of the
UAV, which is a unique element of the terminal mission.
Mission behavior describes the scenario behavior of the UAV
under the terminal mission. As shown in Table 1, Behavior
defines the specific actions the UAV needs to perform, such
as TAKE PHOTO, RECORD VIDEO, and TRANSPORT.
Relationship: Relationship represents the temporal relation-
ship between missions. As shown in Figure 3, mission rela-
tionships include parallel execution (Cobegin), sequential ex-
ecution (Sequence), branch execution (Fork) and convergence
execution (Join). In particular, when the mission is a terminal
task, it is the smallest atomic task, so parallel execution is not
supported.

Sequence
iT jT Cobegin

iT jT Join

iT

jT
kT ForkiT

jT

kT

(a) (b) (d)(c)

Figure 3: Temporal relationship constraints on mission

Sequence(Ti, Tj) represents the linear execution relationship
between tasks, Task Tj can only start execution after task Ti

Table 1. UAV mission behavior

Keywords Parameters Description
TAKE PHOTO shooting location shooting
FILM VIDEO Shooting location and duration Video
LIGHTING open sign illuminate
PATROL starting point and ending point Inspection
SEARCH Task target information search

region
LOAD Cargo location Loading

and
unloading
cargo

TRANSPORT starting point and ending point transport
cargo

DROP placement unload
location

has been executed. Cobegin(Ti, Tj) represents the relationship
between task Ti responsible and task Tj starting at the same
time. Join(Ti, Tj , Tk) represents that task Tk can only be
executed after task Ti and task Tj have been executed.
Fork(Ti, Tj , Tk) represents that after the execution of task
Ti is completed, task Tj and task Tk will be executed.
Requirement: Requirement represents the resources required
to complete the task and is used to match the capability scope
corresponding to the resource model. For example, performing
night missions requires UAVs with resources corresponding to
lighting capabilities.
Target: The Target element represents the target character-
istics of the task and is a unique element of the terminal
task, including TargetLocation, TargetType, TargetShape, Tar-
getEvent, TargetSize and TargetCoords.
Terminal: Terminal indicates the terminal status of the task
and determines whether the task is a terminal task. Terminal
mission refers to an indivisible mission unit and is also the
smallest unit for a drone to perform a mission. Similar to a leaf
node in a tree, its out-degree is 0 and it is a terminal node. We
use the task meta-model to indicate whether it is a terminal
subtask based on the value of 0 or 1 of the task terminal
attribute (Termination). If no other tasks will be executed
after a task is executed, then the task is called a terminal
task. Depending on whether it is a terminal task or not, the
elements appearing in the task meta-model are divided into
two situations for discussion. Table 2 shows the meaning of
the elements of the task metamodel and its relationship with
the terminal tasks.

2.3 Resource Model

UAV resources refer to resources such as drones and related
equipment, technology and knowledge needed to complete
specific missions.

Resource =< Info, State,Domain, Service,

Log, Performance >
(6)
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Table 2. The meaning of task property elements and their
relationship with terminal tasks

Element Description Terminal
Tasks

Non-terminal
Tasks

State Task State ✓ ✓
Type Task Type ✓ ✓
Time Task Time ✓ ✓
Coord Task Coord ✓ ✓
Relationship Subtask collabo-

ration relationship
× ✓

Requirement Task resource re-
quirements

✓ ✓

Target Task Target ✓ ×
Behavior Task Behavior ✓ ×

Among them, Info represents the basic information of
the resource, including four attributes: id, name, type and
description, which respectively represent the unique iden-
tifier, name, type and description of the basic information
of the resource. State represents the status information of
the resource, which is idle, inuse, abnormal or invalid.
Domain represents the domain information of the resource,
that is, the field in which the resource can be used. The value
includes fields such as logistics and transportation, search and
rescue, and highway inspection. Service represents the service
information of the resource, including the attributes Number
and Time and the sub-element TaskList, which respectively
represent the quantity of the resource, the available time and
the set of tasks that can be completed. Log represents the
historical information of the resource, including the attributes
Time and Note, which respectively represent a certain histor-
ical time of the resource and its corresponding record.
Performance element represents the performance informa-
tion of the UAV resources, that is, the UAV’s resources,
payload resources, etc. that can be called when the UAV per-
forms tasks. As shown in the following formula, we manually
analyzed the information manual of the UAV official website in
detail and extracted the Performance elements into five tuples.
UAV performance can be used to describe the capabilities
displayed by UAV resources. Therefore, as shown in Table 3,
we summarized the five types of capabilities that UAVs need
to have based on the performance of UAVs.

Perfermance =< Move,Communication, Sense,

Payload,Endurence >
(7)

2.4 Constraint Model

Various constraints during the mission execution of the UAV
swarm are the basis for ensuring the safe execution of the
mission. Accurately describing UAV swarm constraints is
also a prerequisite for optimal scheduling of UAV swarm
operations. In order to accurately describe the constraints of
UAV swarm application scenarios, we summarized two types

of constraints: UAV resource constraints and environmental
constraints.
(a) Resource constraint: Resource constraints limit the re-
source scheduling during the execution of the UAV swarm,
which can make the UAV swarm’s task allocation and path
planning more accurate and efficient. Resource constraints
are deeply bound to the performance of the resource model.
The resource model only represents the performance range of
the corresponding resource. For example, the theoretical flight
time of three UAVs in the endurance capacity is 2 hours, 3
hours, and 5 hours respectively. Assume that a task takes 3.5
hours to execute, and its corresponding sustained performance
constraint is 3.5 hours. We match the corresponding capabil-
ities of the drone based on this constraint and select a drone
that can fly for 5 hours to perform the task.

Resource Constraint =< Movec,

Communicationc, Sensec, Payloadc, Endurencec >
(8)

(b) Environment constraint: Environmental constraints can
accurately depict the geographical information environment in
the scene, ensuring that the drone group can operate safely and
efficiently under specific environmental conditions. Formula 9
shows the composition of environmental constraints. Next, we
introduce the meaning of each environmental element in detail.

Environment Constraint =< Obstacle,

NoF lyZone, SafeDistance,Weather >
(9)

Obstacle: Obstacle refers to objects encountered by the
drone during flight that cannot be passed horizontally but
can be avoided by adjusting the height. As defined by the
Formula 10, Obstacle elements include coordinates (coord),
minimum height (minAlt), and maximum height (maxAlt).
Assume that the coordinates of the UAV during the flight
are (Ux, Uy, Uz) and the height range of the obstacles is
(Altmin, Altmax). When encountering an obstacle, the UAV
needs to lower or raise its height to avoid the obstacle. The
z-axis coordinates Uz of the UAV need to be lower than the
lowest height of the obstacle (Uz < Altmin) or higher than
the highest height of the obstacle (Uz > Altmax).{

Obstacle =< coord,minAlt,maxAlt >
Uz < Altmin, Uz > Altmax

(10)

NoFlyZone: NoFlyZone is the airspace, area or specific lo-
cation that drones are prohibited from entering or flying over
during flight. There are three types of areas in the no-fly zone
including rectangular area (Rectangle), circular area (Circle)
or polygonal area (Polygon). UAV must strictly comply with
the no-fly zone restrictions during flight, that is, they must
not be within the longitude, latitude, and altitude of the no-fly
zone.
SafeDistance: SafeDistance defines the minimum safe dis-
tance and safe height limit between the UAV and the external
environment and the UAV. It is described by the three elements
minDis, minAlt and maxAlt, which respectively represent the
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Table 3. UAV performance keywords and descriptions

Performance Name Keywords Description

MoveAbility

maxAscendingSpeed maximum ascent speed
maxDescendingSpeed maximum descend speed
maxHorizontalSpeed maximum horizontal flight speed
maxWindResistance maximum wind resistance speed
maxTakeoffAltitude maximum takeoff altitude
maxTiltAngle maximum tilt angle
maxRotationSpeed maximum rotation angular speed
maxHoveringTime maximum hover time

CommunicationAbility

GNSS global navigation satellite system
workingFrequency working frequency
imageQuality image transmission quality
imageDelay image transmission delay
maxsIgnalRange maximum signal range

SenseAbility senseabilityType sensing system type
obstacleAvoidance obstacle avoidance

PayloadAbility
emptyWeight bare metal weight
maxPayload maximum payload
gimbalQuantity number of UAV gimbals

EnduranceAbility

maxFilghtRange maximum flight range
flighttime theoretical flight time
currentFlightTime current flight time
remainingFlightTime remain flight time
workingTemperature working temperature
protection protection level

minimum safe distance and the minimum and maximum flight
height in the safety restrictions. The distance between the
drone and other objects in the environment is Dis, the current
height of the drone is Alt, the minimum safe distance of
the drone is minDis, and the safe height limits are minAlt
and maxAlt, then the safety distance constraints Safedistance
need to satisfy the following formula:

Safedistance =

{
Dis ≤ minDis
minAlt ≤ Alt ≤ maxAlt

(11)

Weather: Weather will affect the flight direction, track height,
smooth hovering, etc. of the UAV. Weather constraints define
the weather conditions encountered by the UAV group during
the mission, including weather types (Type), such as high
temperature, low temperature, heavy fog, thunder and light-
ning, rainfall, strong wind, etc. Mission planning for different
weather constraints during mission execution can improve mis-
sion execution efficiency and safety. In bad weather conditions,
UAV cannot pass, and the weather coverage area is impassable.
The weather constraint tuple is as follows:

Weather =< Type,Duration, Temperature,

CoveredArea,Wind >
(12)

Among them, Duration represents the duration range of the
weather. Temperature represents the lowest temperature to
the highest temperature, which is related to the UAV’s working

environment. CoveredArea represents the weather coverage
area. Wind represents the wind level and wind speed under
the current weather, which is related to the wind resistance
speed in the UAV resource capability.

2.5 Application Scenario Modeling Language
Specific fields limit traditional Domain-Specific Languages
(DSL) and cannot fully cover the needs of multiple UAV
swarm scenarios such as missions, resources, and constraints.
Therefore, we design an Application Scenario Modeling Lan-
guage (ASML) to describe UAV swarm application scenarios
formally. The structure of ASML follows the meta model
of the UAV swarm application scenario. Specifically, ASML
converts the mission metamodel, resource metamodel and con-
straint metamodel into Backus–Naur Form (BNF) to determine
the corresponding grammar rules. In addition, in order to
ensure the understandability, scalability and reusability of the
language, ASML draws on the design method of the extensible
markup language XML. XML has strong versatility, scalability
and powerful schema support, and can provide basic language
design support. Its clear structure and wide adaptability reduce
the difficulty of ASML language implementation.
ASML defines basic lexical and grammatical rules. Lexical
rules include components, data types, keywords, etc. The
components clarify the meaning and composition relationship
of each part of the scene modeling language. The data type
represents the different types and formats of data and clarifies
the storage form of the data. By designing the corresponding
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Table 4. ASML to timed automata conversion rules

ASML Timed Automata Description
Mission model Timed automata template A mission model converted into UPPAAL’s timed automata template.
Terminal task Location Terminal tasks are converted to Location elements in UPPAAL tem-

plates.
Task time attribute Guard If a terminal task contains time attributes, the time attributes are

converted into time constraints of the edge Guard.
Task Behavior Channel The task behavior of the terminal task is converted into the Synchro-

nization channel.
Resource constraint Update Resource constraints are converted into resource matching functions for

edge update operations, and resource margins are updated.

vocabulary, ASML keywords obtain the part-of-speech tags
and their meanings of application scenarios by designing
corresponding vocabulary lists.
Syntax rules use the Backus-Naur Form (BNF) to define
syntax rules for scene elements, their tasks, resources, and
constraint sub-elements and attributes. BNF provides a more
formal grammatical description structure system. As a met-
alanguage specifically used to define languages, it has the
characteristics of concise syntax, and clear expression, and
is conducive to syntax analysis and compilation. BNF can ex-
press grammar rules canonically, and the grammar it presents
does not depend on a specific context. ASML uses XML
Schema diagrams to intuitively express each element’s at-
tributes and sub-element composition in the scene model. We
will not go into more detail about ASML here. We have
open sourced [17] the lexical and grammatical rules and usage
methods corresponding to ASML for your reference.
In addition, in order to reduce the difficulty of writing the
language, we developed a graphical interface tool for the
application scenario modeling function. The graphical inter-
face can realize low-code programming and can generate and
parse application scenario modeling language according to
user configuration. This tool is based on the Qt Creator inte-
grated development environment, uses the C++ programming
language combined with the MSVC compiler and provides
support for tool interface design through Qt Design.

2.6 Transformation rules for timed automata

The UAV swarm application scenario model can be mapped
into a timed automata network. As shown in Table 4, the
mission model can be mapped to a timed automata template in
UPPAAL, and the terminal task can be defined as a Location.
The time properties between tasks can be mapped to Guard on
the corresponding task edges of the timed automata. Resource
constraints can be mapped to the allocation and consumption
of resources on the edge of a timed automata.
However, the application scenario model can only be converted
into a partially timed automata network. In order to achieve
the correct operation of the timed automata, we preset the
timed automata template. The timed automata template is
preset with some dynamic behaviors of random simulation and
some preset required functions. To this end, model conversion

becomes a template optimization and completion task. A well-
running timed automata network can be obtained as long as
the application scenario model completes the corresponding
conversion.
Algorithm 1 shows the conversion steps from the UAV swarm
application scenario model to the timed automata network. We
first convert the preset template to the style of the UPPAAL
template. Then traverse all task models, and if the task is
terminal, change it to the UPPAAL Location. If there are
two terminal tasks li, lj , and there is a sequential relationship
between them, then the time constraint of terminal task li
is converted into the Guard of edge(li, lj), and the time
constraint of terminal task li is converted into the Update
function of edge(li, lj). We end up with a converted, runnable
timed automata network.

Algorithm 1 algorithm of transformation rules

Input: ASML, Preset Templates
Output: Timed Automata Network

1: begin
2: UPPAAL Templates ← Preset Templates
3: for each li ∈ task do
4: if li == terminal then
5: Location← li;
6: i++;
7: end if
8: for sequence(li, lj) = True do
9: if lj == terminal then

10: Guard(edge(li, lj))← time attribute(li);
11: Update(edge(li, lj))← resource constrint(li);
12: end if
13: j ++;
14: end for
15: end for
16: return Timed Automata Network

3. EMPIRICAL RESULTS

3.1 Logistics Scenarios

The UAV swarm logistics scenario mainly refers to the real-
ization of logistics transportation through UAV swarms. This
logistics scenario is divided into two layers of task structure,
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including mission and tasks. The mission is divided into
three tasks: load, transport, and unload. These tasks have a
sequential relationship and are performed sequentially. For
these task types, different UAV mission behaviors are required.
As shown in Table 1, executing these tasks requires the
appropriate keywords including LOAD, TRANSPORT and
UNLOAD as well as the incoming parameters.

3.1.1 Language Comparison
We compare the description capabilities of the ASML UAV
scene modeling language and the other two general UAV
swarm modeling languages. Table 5 shows that ASML can
describe resource capabilities and resource constraints in de-
tail. The other two languages can only describe the task exe-
cution of logistics scenarios, but cannot provide a fine-grained
description of resource capabilities and resource constraints.

Table 5. Comparison of different modeling languages

Language Task Resource Resource Constraint
GML [18] ✓ × ×
SL4U [19] ✓ × ×
ASML ✓ ✓ ✓

3.1.2 Environment
Figure 4 shows the setup information of the initial logistics
scenario. The specific area size is 20*10, and the gird width
as well as minimum safety is 5m. There are a total of 6 way
points and they are connected in sequence. At the same time,
the no-fly zone is a rectangle from (2,2) to (4,4), in which
drones are not allowed to pass through. The constraints for
this scenario are shown in Figure 5 according to the ASML.
TaskTarget consists of five cargoes with different weights to
be transported, each of which is a cubic type. Waypoints are
sets of enter and leave points for individual tasks.

Task1 Enter

Point(6,-4)

uav1

Task1 Leave

Point(-4,2)

Task3 Enter Task3 Leave

Mission Enter

uav2

Load Task

Unload Task

Transport Task

Task2 Enter

Task2 Leave Mission Leave

uav3

Figure 4: Set up for the initial logistics scenario

3.1.3 Mission
Mission describes the relationship between three tasks with
sequences, executing task1, task2 and task3 sequentially, and it
contains these three tasks as shown in Figure 6.In this scenario,
the tasks of the same type are Cobegin for each UAV, while the
tasks of the different types are Sequence for a single UAV. For

Figure 5: ASML for constraint

example, each load task is parallel to each other, as is each load
task, but there is a sequential relationship between the load
and unload tasks. Task1, task2 and task3 describe the tasks
to be performed by the UAV, including the task enter point,
target point, leave point, and the corresponding behaviors
respectively. The components of the logistics scenario mission
are shown in Table 6. The relationship between each task is
shown in Formula 13, task1 is executed first, followed by task2
and finally task3. The targets of task1 are five cargoes to be
transported with masses of 1kg, 1kg, 2kg, 2kg and 3kg. Three
UAVs will transport these cargoes from task1’s point to task3’s
point.

Figure 6: ASML for mission

{
Sequence(Task1, Task2)
Sequence(Task2, Task3)

(13)
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Table 6. Composition of logistics scenario tasks

Task attribute Task1 Task2 Task3
Task State allocated allocated allocated
Task Type load transport unload
Task Time 00:00-00:05 00:05-00:25 00:25-00:30
Task Coord (-5,2,0) (1,-1,0) (8,2,0)
Task Terminal 1 1 1
Task Requirement Camera Camera Camera
Task Behavior LOAD TRANSPORT DROP
Task Target point line point

3.1.4 Resource

For the resource setup, the UAVs are required to have a certain
load capacity to lift the cargoes, as well as sufficient battery
life, and it need to be loaded with a camera to recognize the
appropriate cargoes and drop-off points. Resource information
for each UAV is shown in Table 7. The resource information
about UAV1, UAV2 and UAV3 are depicted using ASML,
where the information for UAV1 is shown in Figure 7. In the
end, the three UAVs transported the five cargoes from task1 to
task3 and returned to the starting position of UAV1, as shown
in Figure 8. The state of each UAV is switched depending on
whether it is currently performing a task(e.g., load task) or not
for better collaborative tasking.

Figure 7: Resource information for UAV1

Task1 Enter

Point(6,-4)

Uav1&2&3

Task1 Leave

Point(-4,2)

Task3 Enter Task3 Leave

Mission Enter

Load Task

Unload Task

Transport Task

Task2 Enter

Task2 Leave Mission Leave

Figure 8: End of the scene for the logistics scenario

Table 7. Composition of initial UAV resources

UAV Load
Ability

State Location Endurance Payload

UAV1 1.5kg available (-6,3,0) 45min camera
UAV2 2.5kg available (6,-3,0) 45min camera
UAV3 3.5kg available (6,3,0) 45min camera

3.2 Experiment platform and result

In order to verify the validity of the scenarios constructed by
ASML, this paper configures a UAV simulation environment
and conducts the corresponding real-aircraft testing. This
experiment’s hardware and software setup are as follows:
• CPU: Intel(R) Core(TM) i7-9700
• Memory: 16GB
• Ubuntu: 20.04
• ROS: Noetic
• Gazebo: 11.11.0
The UAV team (UAV1, UAV2 and UAV3) will work together
to complete the mission and eventually return to the designated
point. As depicted in Figure 9, the initial points of the three
UAVs are marked with red circles, and the five cargoes to be
transported are in the yellow circles; the UAVs will transport
these cargoes to the unloading point in the blue circles.

Figure 9: Initial setting of the logistics scenario

The final state of the scenario is shown in Figure 10, where
the five cargoes are transported by the three UAVs in concert
to the blue circle, while all UAVs return to the starting point
of UAV1, marked by the red circle.

3.3 Verification

3.3.1 UPPAAL Models

We convert the logistics UAV swarm application scenario
model into a UPPAAL timed automaton network. It includes
task templates and task scheduling templates. As shown in
Figure 11, the task template abstracts the execution process of
each cargo handling task. The logistics scenario contains five
cargo handling tasks, and each handling task is an instance of
the task template. The cargo task initially is in the Init state,
and seeks a UAV assignment. If a drone meets the power and
endurance constraints of the handling task, the nearest drone
is selected to enter the cargo-carrying state. Otherwise, if no
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Figure 10: Final state of the logistics scenario

UAV meets the current mission constraints, the UAV needs
to return to the base to recharge to maintain UAV swarm
resource capabilities. After the drone is handled, transported,
and unloaded, it needs to release itself to the unallocated state
and send out a leave signal.

Figure 11: Logistics scenario task automaton

Tasks need to be scheduled correctly to prevent unexpected
situations. We referred to UPPAAL’s classic example of train
scheduling [20] to complete the scheduling template of the
drone swarm. Figure 12 shows the timed automata of this
scheduling template. Since only one drone is required for
each cargo handling, the task scheduling template maintains
the sequential execution of tasks through queues to prevent
multiple drones from picking up or unloading goods at the
same time. When the task is assigned and completed, it is
added to the task queue. The task at the end of the queue
immediately sends a wait signal from the waiting state,
indicating that the drone is executing the task and waiting
for completion, and sends an enter task signal to carry the
goods. After the UAV task automaton is unloaded, it sends
a leave signal and transmits it to the dispatching automaton,
indicating that the task is completed and the handling task can
continue.

3.3.2 Property verification

We use UPPAAL’s model validator to verify the properties of
logistics drone swarm temporal automata networks. UPPAAL
is one of the most widely used model checking tools for
timed automata. It can not only check models, but also

Figure 12: Logistics scenario task scheduling automaton

includes a deadlock detection mechanism. UPPAAL uses Time
Computational Tree Logic (TCTL) to define the syntax of
the property verification specification language. Verifiers only
need to write corresponding query statements to verify the
properties of the system. The specific syntax and meaning of
the UPPAAL property query language are shown in Table 8.

Table 8. Property description language syntax

Formula Description
A[] p p always holds for all states of all paths.
A <> p For all paths, p eventually holds.
E[] p There exists a path for which all states p

always hold.
E <> p There is a path such that p eventually holds.
p→ q Whenever p holds, q will eventually hold.

Specifically, we verify three major types of properties: dead-
lock, safety, and liveness. All verification properties are rep-
resented using Time Computational Tree Logic (TCTL). We
cannot verify the collaborative properties of multiple UAVs,
such as two UAVs moving an object simultaneously. Below
we describe in detail the properties that require verification.
Deadlock: Deadlock means that a state itself or any of its
delayed successors has no outgoing action transition, then
the state is a deadlock state. Therefore, Formula 14 verifies
whether a certain state will enter a deadlock, causing the
system to remain stuck in a certain state.

A[] not deadlock (14)

Safety: Safety properties mean that something bad will never
happen. In the logistics drone swarm scenario, since only one
drone is required for a handling task, two drones cannot load
and unload at the same location at the same time to prevent
collisions. Formula 15 is used to verify that when the drone
executes one task, other drones cannot handle other tasks
simultaneously and are in the loading state. The verification
of unloading status is similar to this formula.

A[] forall(i : id t) forall(j : id t) Task(i).Load

&&Task(j).Load imply i == j
(15)

Liveness: Liveness properties indicate that something good
will eventually happen. Formula 16 indicates that when a path
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prevents the UAV from being assigned, the UAV will return to
the ground station to recharge to satisfy the UAV capabilities
required for the task. Formula 17 indicates that task 0 can
eventually be unloaded after being loaded by the UAV. Verify
that other handling tasks are similar to task 0, so we will not
discuss details here.

A <> forall(i : id t) Task(i).GoBase (16)

Task(0).Load→ Task(0).Unload (17)

Table 9 shows the verification results of the above properties.
We can find that all properties are satisfied after verification.
This shows that the UPPAAL model we built meets the quality
requirements of not deadlock, safety and liveness.

Table 9. UPPAAL verification results

Property Type Formula Number Verification Results
Deadlock (14) Satisfy this property
Safety (15) Satisfy this property

Liveness (16) Satisfy this property
(17) Satisfy this property

4. RELATED WORK

4.1 Single UAV mission description

A UAV swarm is composed of multiple individual UAVs.
Therefore, the individual UAV mission description is the basis
of the UAV swarm. To accurately describe the diverse tasks
performed by individual robots in different application fields,
many scholars use individual task descriptions to describe the
tasks and behaviors of robots.
The individual task description is initially based on the way-
point list method [21], which considers the individual task as
a waypoint that the robot passes through and the action that
should be performed at that point. However, the waypoint list
is a fixed form of description and cannot adapt to dynamically
changing mission environments when obstacles exist. Kono-
lige et al. [22] proposed a robot control language COLBERT
based on a Finite State Machine (FSM) with standard iteration,
sequence and conditional structures. Tousignant et al. [23]
further proposed the XRobots language based on hierarchical
state machines and regarded states as behaviors. The XRobots
language solves the limitations of FSM that are not easy
to expand and maintain as the number of robot behaviors
increases.
In addition, to improve the adaptability of UAVs to dynamic
scenes, Molina et al. [10] designed and implemented a task-
based mission specification language (TML) for search and
rescue scenarios. TML describes tasks hierarchically through
a tree structure. Lan et al. [24]use behavior trees as the
main underlying structure to represent and further execute
complex task plans. Li et al. [25] proposed an integrated
real-time sensing UAV mission based on the Robot Operating
System (ROS) for flight control systems that use behavior trees
as decision-making control mechanisms to manage context
changes and flight behaviors.

4.2 UAV swarm mission description

The UAV swarm mission description language can define the
tasks that multiple UAVs perform together, the operations each
UAV needs to perform, and the mutual restrictions between
these operations.UAV swarm mission description methods can
be divided into three aspects: quasi-programming language,
declarative markup language and graphical interface.
Programming-like language: Programming-like languages
are similar to programming languages in syntax and structure
but are not primarily used for writing computer programs.
These languages can design rules, logic, or procedures that
express domain-specific rules, allowing users to programmat-
ically express complex logic or operations. Merino et al. [26]
proposed a framework for collaborative fire detection using
heterogeneous UAV formations and applied it to the multi-
UAV project COMETS. However, drones must be adapted
to fit within this framework and function properly. Dantu
et al. [27] proposed Karma, a system for programming and
managing micro-UAV swarms. Dedousis et al. [28] proposed
PaROS (PROgramming Swarm), a framework that can be
used for UAV swarm and single UAV programming. PaROS
provides developers with Abstract Swarm programming prim-
itives to simplify the programming of drone swarms and
eliminate the complexity of low-level programming. Mottola et
al. [29] proposed the Team-level programming UAV program-
ming model VOLTRON, which can dynamically allocate tasks
to UAVs according to mission requirements to the greatest
extent. Pinciroli et al. [30] proposed Buzz, a programming
language designed for large-scale, heterogeneous robot clus-
ters. Programming-like languages provide rich feature sets and
high expressiveness but are unsuitable for rapid application in
dynamic scenarios.
Declarative markup language: In the aviation field, XML
has gradually become the data exchange standard in the
current European and American air traffic management up-
date program SESAR [31]. Therefore, the task description
method of declarative markup language is mainly implemented
through the extensible markup language (XML) [32]. Doherty
et al. [33] proposed a task specification language based on
Task Specification Trees (TST) and applied it to UAV collabo-
rative systems. Bozhinoski et al. [9] proposed domain-specific
languages for drone swarms, including Monitoring missions
language (MML) and Quadrotor Behavior Language (QBL).
Silva et al. [34] designed a set of languages to describe multi-
robot tasks, including the extensible markup-based mission
description language Mission Description Language (MDL).
The MDL can only describe the area, actions, sequence and
time constraints for mission execution, and UAV requirements.
In order to describe potential abnormal elements in multi-robot
tasks, such as human interference and natural interference,
Silva et al. [35] further proposed the Disturbance Description
Language Disturbance Description Language (DDL). Silva et
al. [36] also proposed Scenario Description Language (SDL)
and Team Description Language (TDL) based on extensible
markup language as static component expressions of scene and
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task knowledge. SDL defines the physical scene and global
operational constraints, while TDL defines the vehicle team
and team-specific operational constraints. In order to meet the
application needs of UAV swarms in multi-task scenarios, Jia
et al. [18] constructed a UAV swarm mission model suitable
for a variety of dynamic tasks and multiple scenarios, and
designed an XML-based cluster task description language
Group Mission Language (GML). Zhao et al. [19] proposed
the UAV swarm description language SL4U, which divides
UAV scenarios into environments and tasks. The declarative
markup language approach has good readability, but it is less
flexible in application areas and platforms.
Graphical interface: Graphical interface tools can be used to
define drone missions and create simple flight plans, such as
setting a set of waypoints to fly the drone along a specified
route. UAV manufacturers·[37] Parrot and DJI have launched
customized graphical interface tools. The customization tools
are only open to drones from this manufacturer and are not
available for drones from other brands. To formulate more
detailed UAV missions, FlyMASTER [38] provides scholars
studying UAV swarm systems with a software platform that
facilitates integration, rapid development, and flexible use.
However, it is only suitable for domain experts with strong
technical expertise, and has the limitation of difficulty in
interacting with ordinary users. Ruscio et al. [39] proposed
MML, a monitoring task language that can be used by non-
technical experts, and implemented FLYAQ, a platform for
defining monitoring tasks in a graphical interface. However,
FLYAQ does not support automatic detection of task regions
with multiple geometries or visualization or planning of three-
dimensional trajectories [40]. To solve these problems, Besada
et al. [40] proposed a mission definition system that simultane-
ously supports pre-flight mission visualization and trajectory
prediction. The graphical interface has a good interactive
interface and is easy for users to use, but it is deeply bound
to the application it is developed and difficult to migrate.

5. CONCLUSION

In order to accurately describe UAV swarm application sce-
narios, we propose a modeling method based on meta-level
theory. We characterize UAV application scenarios with mis-
sion, resource, and constraint models. Furthermore, to for-
mally represent the proposed modeling approach, we construct
and implement an Application Scenario Modeling Language
(ASML). ASML refers to the description method of extensible
markup language XML and defines the corresponding lexical
and BNF syntax rules. ASML can be further converted into
timed automata to verify its correctness. We verify the relia-
bility of the proposed modeling method in a logistics handling
scenario.
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