
The Journal of Systems and Software 226 (2025) 112416

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Modeling and verifying resources and capabilities of ubiquitous scenarios for
Unmanned Aerial Vehicle swarmI

Manqing Zhang a , Yunwei Dong a,∗, Tao Zhang b , Kang Su a , Zeshan Li a
a School of Software, Northwestern Polytechnical University, Xi’an, China
b School of Computer Science and Engineering, Macau University of Science and Technology, 999078, Macao Special Administrative Region of China

A R T I C L E I N F O

Keywords:
Unmanned Aerial Vehicle swarm
Application scenarios
Meta-level theory
Formal verification

 A B S T R A C T

Unmanned Aerial Vehicle (UAV) swarms are increasingly deployed in both military and civilian sectors
due to their ability to manage numerous resources, execute complex functionalities, and operate under
strict spatiotemporal constraints in task-driven environments. However, existing task description methods are
often restricted to specific operations and lack the flexibility to represent dynamic and intricate scenarios.
To overcome these limitations, we introduce a meta-level theory-based UAV swarm application scenario
model. This approach abstracts three primary meta-models: mission meta-model, resource meta-model, and
constraint meta-model. We developed the UAV Swarm Application Scenario Modeling Language (ASML),
which enables formal scenario descriptions and analysis. Additionally, we establish a set of transformation
rules to convert ASML representations into timed automata. To validate the effectiveness of the proposed
approach, we apply it to a highway inspection scenario and utilize the UPPAAL model checking tool to verify
the correctness of the model. The experimental results from the highway inspection scenario show that our
approach significantly enhances the accuracy of UAV swarm scenario modeling while improving adaptability
to dynamic environments. Moreover, the results also demonstrate the model’s correctness, reinforcing the
reliability of our framework.
1. Introduction

The modeling of resources and capabilities in the context of Un-
manned Aerial Vehicle (UAV) swarms in ubiquitous scenarios forms the
foundation for building efficient, intelligent, and collaborative systems.
With the rapid development of UAV technology, UAV swarm (Zhou
et al., 2020) systems are gradually becoming a primary approach for
multi-task collaboration, with application scenarios spanning aerial
surveillance (Wu et al., 2020; Javaid et al., 2023), search and res-
cue (Arnold et al., 2020; Lomonaco et al., 2018), logistics delivery (Wen
et al., 2018; Zhong et al., 2023; Khan et al., 2020), and disaster rescue.
In these scenarios, systems are required to execute tasks in complex
environments, which demands UAV swarms to utilize limited resources
efficiently and possess the ability to adapt dynamically. To achieve this,
it is essential to precisely model the resources of UAV swarms (such as
loading capabilities, communication bandwidth, energy consumption,
etc.) and reasonably assess and verify their task execution capabilities.

Existing research only focuses on specific mission scenarios, such
as only applicable to regional monitoring (Bozhinoski et al., 2015) or
search and rescue (Molina et al., 2017) mission scenarios. However,

I Editor: Wong W. Eric.
∗ Corresponding author.
E-mail address: yunweidong@nwpu.edu.cn (Y. Dong).

the broad adoption of UAV swarms introduces challenges in more
complex scenarios, characterized by task diversity and environmental
uncertainty. Existing task modeling methods cannot achieve reuse and
accurately describe complex application scenarios when dealing with
diverse application scenarios.

To overcome this limitation, we propose a comprehensive method
for modeling UAV swarm application scenarios. Our approach involves
using meta-level theory to abstract UAV swarm scenarios into mis-
sion, resource, and constraint meta-models. By leveraging these meta-
models, we can effectively characterize diverse UAV swarm scenarios
through the development of corresponding mission, resource, and con-
straint models. We further formalize the meta-model into a dedicated
modeling language, complete with defined lexical and syntactic rules.
Additionally, we translate the modeled scenarios into UPPAAL timed
automata – a tool developed by Uppsala University and Aalborg Uni-
versity – to verify scenario correctness. In summary, this paper offers
the following contributions:

• We propose a UAV swarm application scenario modeling method
based on meta-level theory. This modeling method can accurately
https://doi.org/10.1016/j.jss.2025.112416
Received 28 September 2024; Received in revised form 9 January 2025; Accepted
vailable online 8 March 2025
164-1212/© 2025 Elsevier Inc. All rights are reserved, including those for text and
25 February 2025

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0001-9086-0503
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0009-0006-9825-5037
https://orcid.org/0009-0006-4168-4375
mailto:yunweidong@nwpu.edu.cn
https://doi.org/10.1016/j.jss.2025.112416
https://doi.org/10.1016/j.jss.2025.112416
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2025.112416&domain=pdf

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
describe complex and diverse UAV swarm application scenarios in
detail.

• We design and implement a UAV swarm Application Scenario
Modeling Language (ASML). We have developed a graphical tool
interface that enables low-code and flexible programming.

• We define the conversion rules from ASML to timed automata,
which can realize the formal verification of the constructed ap-
plication scenarios.

• We verify the feasibility of the proposed modeling method and
language in a logistics handling scenario.

The rest of this paper is organized as follows. In Section 2, we
provide an overview of the background knowledge relevant to our
study. Section 3 details our scenario model and the corresponding
modeling language. Section 4 describes the verification method for the
UAV application scenario. Section 5 presents the simulation experiment
and verification results for a logistics handling scenario. Section 6
discusses related work, and Section 7 concludes the paper.

2. Background

2.1. Timed automata

Timed automata are widely used in formal modeling, formal veri-
fication, simulation, automatic code generation and automatic model
repair of sequential systems (Kölbl et al., 2020). Timed automaton
is an extension of finite automaton, adding a clock and having the
semantics of continuous real numbers. A timed automata is a five-tuple
𝑇𝐴 = (𝐿, 𝑙0, 𝐶, 𝐸, 𝐼). Among them, 𝐿 is a finite set of 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠. 𝑙0 ∈ 𝐿,
and represents the starting position. 𝐶 is a finite set of clock variables.
𝐸 ⊆ 𝐿 ×𝐺(𝐶) × 2𝐶 × 𝐿 C is a set of 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛. 𝐼 is the set of 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠.

The state of timed automata can be represented by a tuple (𝑙, 𝑣),
where 𝑙 represents a 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 of the timed automata, and 𝑣 represents
the clock value that satisfies the 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡 of 𝑙. Given a clock
variable 𝑥, 𝑣(𝑥) represents the value of 𝑥 at state (𝑙, 𝑣). All clock variable
values increase synchronously as time passes. Suppose (𝑙1, 𝑔, 𝑟, 𝑙2) is a
transition on the time automata. When the current location of the time
automata is 𝑙1 and the time guard 𝑔 is satisfied, the transition may
occur. After the transition occurs, the current location of the timed
automaton becomes 𝑙2, the values of the clock variables in the set 𝑟 are
reset to 0, and the values of other clock variables remain unchanged.

2.2. UPPAAL toolbox

UPPAAL is a toolbox for real-time system modeling and verification,
which uses a timed automata network to simulate the system’s behav-
ior, and uses Timed Computational Tree Logic (TCTL) to describe the
properties of the system.

In UPPAAL, each timed automata is called a Template, and a
network composed of multiple concurrent timed automata becomes
a timed automaton network 𝑇𝐴𝑁 ≡ 𝑇𝐴1‖𝑇𝐴2 ⋯ ‖𝑇𝐴𝑛. A template
consists of 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 and 𝐸𝑑𝑔𝑒𝑠. 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 can be constrained with
location 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠, and the automaton can remain at that location
as long as the clock value satisfies the invariant condition for that
location. 𝐸𝑑𝑔𝑒𝑠 contains four optional types of elements: selections,
guards, synchronizations and updates. 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 non-deterministically
binds the given identifier to a value within the given range. 𝐺𝑢𝑎𝑟𝑑
indicates whether the state can be transitioned. 𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 defines
the channels used for synchronization between networks of timed au-
tomata. 𝑈𝑝𝑑𝑎𝑡𝑒 indicates that when the state transitions, the expression
on the transition’s edge will update its variable value.

UPPAAL uses TCTL to define the syntax of the property verifica-
tion specification language. Verifiers only need to write corresponding
query statements to verify the properties of the system. The specific
syntax and meaning of the UPPAAL property query language are shown
in Table 1.
2
Table 1
Property description language syntax.
 Formula Description
 𝐴[] 𝑝 p always holds for all states of all paths.
 𝐴 <> 𝑝 For all paths, p eventually holds.
 𝐸[] 𝑝 There exists a path for which all states p always hold.
 𝐸 <> 𝑝 There is a path such that p eventually holds.
 p imply q If p satisfies, then q also satisfies.
 𝑝 → 𝑞 Whenever p holds, q will eventually hold.

Fig. 1. Overview of UAV swarm scenario modeling.

3. Modeling method

3.1. Overview

To thoroughly abstract and describe the UAV swarm application
scenario, we employ a modeling method based on meta-level theory.
Specifically, as shown in Fig. 1, we begin by analyzing various examples
of UAV swarm scenarios and distill them into three primary models:
mission, resources, and constraints. By identifying common features
across these scenarios, we develop a mission meta-model, a resource
meta-model, and a constraint meta-model, which serve as the foun-
dation for constructing detailed scenario models. Metamodel (Kühne,
2006) can be regarded as the ‘‘model’’ of the model, which can be used
to define the model concept and create corresponding elements for the
model. The metamodel is equivalent to the model’s template, and the
model can be regarded as an instance of the metamodel. Through the
template definitions and concepts provided by the metamodel, models
can be abstracted and interactive relationships between models can
be described, providing high scalability and flexibility. The application
scenario model ultimately consists of a task model, a resource model,
and a constraint model.

Additionally, existing Domain-Specific Languages (DSLs) often have
limited expressive power (Fowler, 2010) and are insufficient for com-
prehensively addressing multi-scenario requirements such as tasks, re-
sources, and environmental constraints. To overcome this limitation,
we propose and develop an application scenario modeling language
(ASML) specifically for UAV swarms. This language is designed to
provide a formal method for describing UAV swarm scenarios and
to represent the application scenario model in detail. To ensure the
accuracy of the developed scenario, we convert the scenario model into
a timed automaton and employ the model-checking tool UPPAAL to
validate its properties.

The scenario model is a triplet 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛, 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒,
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩, where (1) The mission meta-model describes the specific
tasks the UAV aims to accomplish within the scenario, (2) The resource
meta-model defines the capabilities and limitations of the UAV’s re-
sources throughout the mission, and (3) The constraint meta-model

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Fig. 2. Mission metamodel element extraction model.

Fig. 3. Temporal relationship constraints on mission.

addresses limitations relationships among tasks and capabilities of
UAV’s resources, such as the mission environment, weather conditions,
obstacles, and other factors, allowing the UAV to effectively adapt to
varying environmental conditions. It is described in detail following.

3.2. Mission meta-model

We employ the 5W1H abstract domain ontology and its associated
relationships to define mission information within the mission meta-
model precisely. Laswell proposed the ‘‘5 W analysis method’’ (Wenxiu,
2015; Parton et al., 2009) and gradually formed a complete ‘‘5W1H’’
model (Yu and Bi, 2010). 5W1H has been used to model domain
ontologies conceptually (Yang et al., 2011). Specifically, as shown in
Fig. 2, we derive UAV mission ontology elements based on six as-
pects: purpose (Why), execution entity (Who), location (Where), timing
(When), resources or events (What), and methods (How). Additionally,
we incorporate mission status, mission relationships, and terminal flags
associated with each mission.

The mission meta-model abstracts the shared attributes among var-
ious missions. The mission meta-model is ultimately composed of 5-
tuples, 𝑀𝑖𝑠𝑠𝑖𝑜𝑛 = ⟨𝐼𝐷,𝑁𝑎𝑚𝑒,𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛, 𝑃 𝑟𝑜𝑝𝑒𝑟𝑡𝑦, 𝐼𝑛𝑐𝑙𝑢𝑑𝑒⟩, where (1)
The ID represents the identifier of the scenario mission, and (2) the
Name represents the name of the scenario mission. (3) The Description
represents the description of the scenario mission, (4) The Property
is a set that represents all properties of the scenario mission, and (5)
The Include lists the lower-level tasks and their IDs that are associated
with this mission layer. For instance, the scenario tasks are organized
into a hierarchical structure with up to three levels: Mission, task, and
subtask. A mission can encompass one or more tasks, and each task
may further include multiple subtasks.

The property is also defines a 9-tuple 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 = ⟨𝑇 𝑦𝑝𝑒, 𝑆𝑡𝑎𝑡𝑒, 𝑇 𝑖𝑚𝑒,
𝐶𝑜𝑜𝑟𝑑, 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝, 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡, 𝑇 𝑎𝑟𝑔𝑒𝑡, 𝑇 𝑒𝑟𝑚𝑖𝑛𝑎𝑙⟩, which
corresponds to the mission. It will discuss in detail the meaning of each
element of the task property:

(1) Type: The mission type denotes the task level, corresponding to
a mission, task, or subtask. By defining mission types, we can effectively
3
Table 2
UAV mission behavior.
 Keywords Parameters Description
 TAKE_PHOTO shooting location shooting
 FILM_VIDEO Shooting location and duration Video
 LIGHTING open sign illuminate
 PATROL starting point and ending point Inspection
 SEARCH Task target information search region
 LOAD Cargo location Loading and unloading cargo
 TRANSPORT starting point and ending point transport cargo
 DROP placement unload location

manage the inclusion relationships between tasks, identify the specific
type of each task, and determine whether a task is at the terminal level.

(2) State: As shown in Formula (1), the term State refers to the
task’s allocation status, which can be one of three possible states:
Allocated, Unallocated, or Partially Allocated. Notably, terminal tasks
do not include the partially allocated state. The allocation status of
tasks follows a bottom-up approach, where the allocation of terminal
tasks or subtasks influences the status of their parent tasks. Let us
assume the task’s assignment status is represented by State; its variables
can include both non-terminal and terminal tasks.
⎧

⎪

⎨

⎪

⎩

𝑋 ∈ {𝑁𝑜𝑛𝑇 𝑒𝑟𝑚𝑖𝑛𝑎𝑙}, 𝑌 ∈ {𝑇 𝑒𝑟𝑚𝑖𝑛𝑎𝑙}
𝑆𝑡𝑎𝑡𝑒(𝑋) ∈ {𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑, 𝑈𝑛𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑, 𝑃 𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑}
𝑆𝑡𝑎𝑡𝑒(𝑌) ∈ {𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑, 𝑈𝑛𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑}

(1)

(3) Time: Time represents the time information of the mission.
Formula (2) defines the constraint relationship of task time. Time sub-
elements include 𝑆𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒, 𝐸𝑛𝑑𝑇 𝑖𝑚𝑒 𝑎𝑛𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑇 𝑖𝑚𝑒. The default
value of the start time is the current time, and the value needs to be
greater than or equal to the current time. The end time 𝑇𝑒𝑛𝑑 of the same
mission needs to be greater than or equal to the start time 𝑇𝑠𝑡𝑎𝑟𝑡. The
estimated time 𝑇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 needs to be less than or equal to the difference
between the end time 𝑇𝑒𝑛𝑑 and the start time 𝑇𝑠𝑡𝑎𝑟𝑡.
⎧

⎪

⎨

⎪

⎩

𝑇 𝑖𝑚𝑒 = ⟨𝑆𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒, 𝐸𝑛𝑑𝑇 𝑖𝑚𝑒, 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑇 𝑖𝑚𝑒⟩
𝑇𝑒𝑛𝑑 ≥ 𝑇𝑠𝑡𝑎𝑟𝑡 ≥ 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ≤ 𝑇𝑒𝑛𝑑 − 𝑇𝑠𝑡𝑎𝑟𝑡

(2)

(4) Coord: Coord is composed of two sets of triples, representing
the longitude, latitude, and altitude of both the entry and exit coor-
dinate points during task execution. The entry coordinate point marks
the starting position where the UAV begins its mission, entering the
designated mission area. Conversely, the exit coordinate point indicates
the position where the UAV leaves the mission area upon completing
its task.

(5) Behavior: Behavior refers to the specific actions the UAV per-
forms during a mission, and it is a distinct element of terminal missions.
This behavior outlines how the UAV operates within the scenario when
executing a terminal mission. As shown in Table 2, Behavior defines
the specific actions the UAV needs to perform, such as TAKE_PHOTO,
RECORD_VIDEO, and TRANSPORT.

(6) Relationship: Relationship defines the temporal connections
between missions. As shown in Fig. 3, these relationships include paral-
lel execution (Cobegin), sequential execution (Sequence), branching ex-
ecution (Fork), and converging execution (Join). Notably, when a mis-
sion is a terminal task—representing the smallest atomic unit—parallel
execution is not applicable.

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒(𝑇𝑖, 𝑇𝑗) represents the linear execution relationship be-
tween tasks, Task 𝑇𝑗 can only start execution after task 𝑇𝑖 has been
executed. 𝐶𝑜𝑏𝑒𝑔𝑖𝑛(𝑇𝑖, 𝑇𝑗) represents the relationship between task 𝑇𝑖
responsible and task 𝑇𝑗 starting at the same time. 𝐽𝑜𝑖𝑛(𝑇𝑖, 𝑇𝑗 , 𝑇𝑘) repre-
sents that task 𝑇𝑘 can only be executed after task 𝑇𝑖 and task 𝑇𝑗 have
been executed. 𝐹𝑜𝑟𝑘(𝑇𝑖, 𝑇𝑗 , 𝑇𝑘) represents that after the execution of
task 𝑇𝑖 is completed, task 𝑇𝑗 and task 𝑇𝑘 will be executed.

(7) Requirement: Requirement refers to the resources necessary
to complete a task and is used to align with the capabilities outlined

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Table 3
The meaning of task property elements and their relationship with terminal tasks.
 Element Description Terminal Tasks Non-terminal

Tasks

 State Task State ✓ ✓
 Type Task Type ✓ ✓
 Time Task Time ✓ ✓
 Coord Task Coord ✓ ✓
 Relationship Subtask collaboration relationship × ✓
 Requirement Task resource requirements ✓ ✓
 Target Task Target ✓ ×
 Behavior Task Behavior ✓ ×
in the resource model. For instance, executing night missions would
necessitate UAVs equipped with lighting capabilities.

(8) Target: The Target element defines the specific characteristics
of a task’s objective and is unique to terminal tasks. It includes at-
tributes such as TargetLocation, TargetType, TargetShape, TargetEvent,
TargetSize, and TargetCoords.

(9) Terminal: Terminal indicates whether a task is at its final stage,
determining if it qualifies as a terminal task. A terminal mission is an
indivisible unit and represents the smallest task a drone can perform.
Similar to a leaf node in a tree, it has an out-degree of 0, making it
a terminal node. The task meta-model uses the Termination attribute,
with a value of 0 or 1, to specify if a task is terminal. A task is classified
as terminal if no further tasks follow its completion. Depending on
whether a task is terminal, the elements within the task meta-model are
categorized into two distinct scenarios. Table 3 outlines the meanings of
the task meta-model elements and their relationships to terminal tasks.

3.3. Resource meta-model

UAV resources refer to resources such as drones and related equip-
ment, technology and knowledge needed to complete specific mis-
sions. The resource metamodel is defined by six tuples 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 =
⟨𝐼𝑛𝑓𝑜, 𝑆𝑡𝑎𝑡𝑒,𝐷𝑜𝑚𝑎𝑖𝑛, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒, 𝐿𝑜𝑔, 𝑃 𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒⟩, where (1) 𝐼𝑛𝑓𝑜 refers
to the basic details of the resource, encompassing four attributes:
𝑖𝑑, 𝑛𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒 and 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛. These correspond to the unique identifier,
name, type, and description of the resource’s fundamental information,
respectively. (2) 𝑆𝑡𝑎𝑡𝑒 represents the status information of the resource,
which is 𝑖𝑑𝑙𝑒, 𝑖𝑛𝑢𝑠𝑒, 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 or 𝑖𝑛𝑣𝑎𝑙𝑖𝑑. (3) 𝐷𝑜𝑚𝑎𝑖𝑛 specifies the domain
in which the resource is applicable, with values that include areas like
logistics and transportation, search and rescue, and highway inspection.
(4) 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 provides details about the resource’s service capabilities,
including the attributes Number and Time, as well as the sub-element
TaskList, representing the resource’s quantity, available time, and the
set of tasks it can perform. Finally, (5) 𝐿𝑜𝑔 contains the resource’s
historical information, with the attributes Time and Note corresponding
to specific past times and their associated records. (6) 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
element represents the performance information of the UAV resources,
that is, the UAV’s resources, payload resources, etc. that can be called
when the UAV performs tasks.

We conducted a thorough manual analysis of the information pro-
vided on the UAV’s official website and distilled the Performance
elements into five key attributes 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = ⟨𝑀𝑜𝑣𝑒, 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛,
𝑆𝑒𝑛𝑠𝑒, 𝑃 𝑎𝑦𝑙𝑜𝑎𝑑, 𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒⟩. These attributes capture the capabilities
demonstrated by UAV resources. Therefore, as shown in Table 4, we
summarized the five types of capabilities that UAVs need to have based
on the performance of UAVs.

3.4. Constraint meta-model

Constraints during the mission execution of a UAV swarm are
crucial for ensuring mission safety and effectiveness. Properly detail-
ing these constraints is essential for optimal scheduling and oper-
ation of the UAV swarm. To provide a precise description of the
constraints in UAV swarm scenarios, we have identified two primary
4
Table 4
UAV performance keywords and descriptions.
 Performance name Keywords Description

MoveAbility

maxAscendingSpeed maximum ascent speed
 maxDescendingSpeed maximum descend speed
 maxHorizontalSpeed maximum horizontal flight speed
 maxWindResistance maximum wind resistance speed
 maxTakeoffAltitude maximum takeoff altitude
 maxTiltAngle maximum tilt angle
 maxRotationSpeed maximum rotation angular speed
 maxHoveringTime maximum hover time

CommunicationAbility

GNSS global navigation satellite system
 workingFrequency working frequency
 imageQuality image transmission quality
 imageDelay image transmission delay
 maxsIgnalRange maximum signal range
 SenseAbility senseabilityType sensing system type
 obstacleAvoidance obstacle avoidance

PayloadAbility

emptyWeight bare metal weight
 maxPayload maximum payload
 gimbalQuantity number of UAV gimbals

EnduranceAbility

maxFilghtRange maximum flight range
 flighttime theoretical flight time
 currentFlightTime current flight time
 remainingFlightTime remain flight time
 workingTemperature working temperature
 protection protection level

types: constraints related to UAV resources and constraints imposed by
the environment.

(a) Resource constraint: Resource constraints govern the allo-
cation and scheduling of resources during UAV swarm operations,
enhancing the accuracy and efficiency of task allocation and path plan-
ning. Resource Constraints consist of five-tuples 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 =
⟨𝑀𝑜𝑣𝑒𝑐 , 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑐 , 𝑆𝑒𝑛𝑠𝑒𝑐 , 𝑃 𝑎𝑦𝑙𝑜𝑎𝑑𝑐 , 𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒𝑐⟩. These
constraints are closely tied to the resource model’s performance capa-
bilities. The resource model outlines the performance limits of each
resource. For instance, if three UAVs have endurance capacities of
2 h, 3 h, and 5 h respectively, and a task requires 3.5 h to complete,
the corresponding resource constraint would be 3.5 h. To meet this
constraint, we would select a UAV with a flight time of at least 5 h to
ensure the task can be successfully executed.

(b) Environment constraint: Environmental constraints provide a
detailed representation of the geographical and environmental condi-
tions in which the UAV swarm operates, ensuring safe and efficient
performance under specific conditions. Environmental constraints are
defined as quadruples 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = ⟨𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒,
𝑁𝑜𝐹 𝑙𝑦𝑍𝑜𝑛𝑒, 𝑆𝑎𝑓𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒,𝑊 𝑒𝑎𝑡ℎ𝑒𝑟⟩. The following sections will pro-
vide a detailed explanation of each environmental element.

(1) Obstacle: An obstacle refers to objects encountered by the
drone during flight that cannot be navigated horizontally but can
be circumvented by altering the drone’s altitude. As defined by the
Formula (3), Obstacle elements include coordinates (coord), minimum
height (minAlt), and maximum height (maxAlt). Assume that the co-
ordinates of the UAV during the flight are (𝑈 ,𝑈 ,𝑈) and the height
𝑥 𝑦 𝑧

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
range of the obstacles is (𝐴𝑙𝑡𝑚𝑖𝑛, 𝐴𝑙𝑡𝑚𝑎𝑥). When encountering an obsta-
cle, the UAV needs to lower or raise its height to avoid the obstacle.
The 𝑧-axis coordinates 𝑈𝑧 of the UAV need to be lower than the lowest
height of the obstacle (𝑈𝑧 < 𝐴𝑙𝑡𝑚𝑖𝑛) or higher than the highest height
of the obstacle (𝑈𝑧 > 𝐴𝑙𝑡𝑚𝑎𝑥).
{

𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 = ⟨𝑐𝑜𝑜𝑟𝑑, 𝑚𝑖𝑛𝐴𝑙𝑡, 𝑚𝑎𝑥𝐴𝑙𝑡⟩
𝑈𝑧 < 𝐴𝑙𝑡𝑚𝑖𝑛, 𝑈𝑧 > 𝐴𝑙𝑡𝑚𝑎𝑥

(3)

(2) NoFlyZone: A NoFlyZone refers to designated airspace, areas, or
specific locations where drones are prohibited from entering or flying
over. These no-fly zones can be categorized into three types: rectan-
gular areas (Rectangle), circular areas (Circle), and polygonal areas
(Polygon). UAVs must adhere strictly to these restrictions, ensuring
they do not enter or fly within the specified longitude, latitude, and
altitude limits of the no-fly zone.

(3) SafeDistance: SafeDistance defines the minimum safe distance
and altitude limits that must be maintained between the UAV and both
external objects and its own flight environment. It is characterized by
three parameters: minDis (the minimum safe distance), minAlt (the
minimum altitude), and maxAlt (the maximum altitude). The distance
between the drone and other objects in the environment is 𝐷𝑖𝑠, the
current height of the drone is 𝐴𝑙𝑡, the minimum safe distance of the
drone is 𝑚𝑖𝑛𝐷𝑖𝑠, and the safe height limits are 𝑚𝑖𝑛𝐴𝑙𝑡 and 𝑚𝑎𝑥𝐴𝑙𝑡, then
the safety distance constraints 𝑆𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 need to satisfy the following
formula:

𝑆𝑎𝑓𝑒𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
{

𝐷𝑖𝑠 ≤ 𝑚𝑖𝑛𝐷𝑖𝑠
𝑚𝑖𝑛𝐴𝑙𝑡 ≤ 𝐴𝑙𝑡 ≤ 𝑚𝑎𝑥𝐴𝑙𝑡

(4)

(4) Weather: Weather conditions can impact various aspects of
UAV operations, including flight direction, altitude, and stability. Prop-
erly planning for these weather constraints can enhance both the effi-
ciency and safety of the mission. In adverse weather conditions, UAVs
may be unable to operate, rendering certain weather-affected areas
impassable. Specifically, Weather is defined as a five-tuple 𝑊 𝑒𝑎𝑡ℎ𝑒𝑟 =
⟨𝑇 𝑦𝑝𝑒,𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝐴𝑟𝑒𝑎,𝑊 𝑖𝑛𝑑⟩, where (1) 𝑇 𝑦𝑝𝑒 indi-
cates the type of weather conditions encountered by the UAV group
during its mission, such as high temperature, low temperature, heavy
fog, thunder and lightning, rainfall, strong wind, etc. (2) 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 repre-
sents the duration range of the weather. (3) 𝑇 𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 represents the
lowest temperature to the highest temperature, which is related to the
UAV’s working environment. (4) 𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝐴𝑟𝑒𝑎 represents the weather
coverage area. (5) 𝑊 𝑖𝑛𝑑 represents the wind level and wind speed
under the current weather, which is related to the wind resistance speed
in the UAV resource capability.

3.5. Application scenario modeling language

Traditional Domain-Specific Languages (DSLs) are often limited in
their ability to address the diverse requirements of UAV swarm scenar-
ios, including missions, resources, and constraints. To overcome these
limitations, we have developed an Application Scenario Modeling Lan-
guage (ASML) designed to describe UAV swarm application scenarios
formally. The structure of ASML is based on the meta-models of UAV
swarm scenarios.

Specifically, ASML translates the mission meta-model, resource
meta-model, and constraint meta-model into Backus–Naur Form (BNF)
to establish the corresponding grammatical rules. BNF was selected
for its ability to precisely define formal grammar and validate syntax,
making it an ideal choice for domain-specific languages like ASML.
Its structured approach ensures that the language’s syntax is both
rigorous and unambiguous, which is critical for the reliable execution
of UAV swarm operations. While BNF may pose a steep learning
curve for developers unfamiliar with formal grammar specifications,
its advantages in providing a clear and consistent framework for
language definition outweigh these challenges. Furthermore, compre-
hensive documentation and examples have been provided to mitigate
this barrier.
5
Table 5
Primitive data types.
 Name Declaration Value example
 Integer 𝑖𝑛𝑡 0,1,−1,77
 Identifier 𝑖𝑑𝑒𝑛𝑡𝑖𝑓 𝑖𝑒𝑟 abc,_bc
 Double-precision floating-point 𝑑𝑜𝑢𝑏𝑙𝑒 0.0,1.5,−3.14
 String 𝑠𝑡𝑟𝑖𝑛𝑔 ’abc’,‘‘bcd’’
 Time 𝑡𝑖𝑚𝑒 2023-11-23T12:30:45
 3D coordinates 𝑐𝑜𝑜𝑟𝑑3 (122.4294, 37.7649, 50)
 3D coordinate array 𝑐𝑜𝑜𝑟𝑑3𝐴𝑟𝑟𝑎𝑦 (0,0,2),(3,4,7)

Additionally, to enhance the language’s understandability, scalabil-
ity, and reusability, ASML incorporates design principles from extensi-
ble markup language (XML). XML was chosen over alternatives such as
JSON or YAML due to its versatility, robust schema validation support,
and hierarchical structure. These features make XML particularly well-
suited for complex UAV swarm scenarios, where ensuring strict data
integrity and compatibility is paramount. For instance, XML’s schema
validation capabilities enable precise definitions of allowable struc-
tures and constraints, reducing the likelihood of errors during mission
planning and execution. Additionally, its hierarchical structure aligns
naturally with the nested relationships often found in UAV swarm
configurations.

While XML’s verbosity and complexity may increase development
overhead compared to more lightweight alternatives, these trade-offs
are acceptable given its reliability and ability to represent extensive
metadata. The decision to use XML ensures that ASML can effectively
handle the intricacies of UAV swarm coordination while maintaining a
high level of flexibility and extensibility. To further support the adop-
tion of ASML, we have made the lexical and syntax rules, along with
usage guidelines, publicly available (Renliang, 2024) for reference.

3.5.1. Lexical rules
ASML defines basic lexical and grammatical rules. Lexical rules in-

clude components, data types, keywords, etc. The components clarify
the meaning and composition relationship of each part of the scene
modeling language. The data type represents the different types and
formats of data and clarifies the storage form of the data. By design-
ing the corresponding vocabulary, ASML keywords obtain the part-of-
speech tags and their meanings of application scenarios by designing
corresponding vocabulary lists.

ASML is composed of three parts: Mission Description Language,
Resource Description Language, and Constraint Description Language.
A scenario represents a situation, which refers to the description of mis-
sions, resources, and constraints of a drone swarm under specific con-
ditions (such as highway inspection). ‘Mission’ refers to the global tasks
within the scenario. ‘Resource’ refers to the resources such as payloads
and drones that the drone swarm possesses while performing tasks in
this scenario. ‘Constraint’ refers to the environmental constraints that
the drones face while executing tasks in this scenario. An application
scenario is defined as follows:

⟨𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜⟩ ∶∶= ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛⟩⟨𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒⟩⟨𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩

Data types are used to define the nature and value rules of data,
determining the range of values that data can store. ASML includes
seven data types, with Table 5 showing the specific type names and
their corresponding examples:

3.5.2. Syntax rules
Syntax rules use the Backus–Naur Form (BNF) to define syntax rules

for scene elements, their tasks, resources, and constraint sub-elements
and attributes. BNF provides a more formal grammatical description
structure system. As a metalanguage specifically used to define lan-
guages, it has the characteristics of concise syntax, and clear expression,
and is conducive to syntax analysis and compilation. BNF can express

M. Zhang et al.

⟨

r
s
b
T

s
c
p
i
s

T
E

I
d
i
a
a
i
g
i
m
F
e

3

g
i
e
a
t
s
e
s
t
t
p
a

n
t
s
n
w
a
t
p
c
e
d
i
e

4

p
i
t
i
f

The Journal of Systems & Software 226 (2025) 112416
Fig. 4. Resource XML Schema.

grammar rules canonically, and the grammar it presents does not de-
pend on a specific context. ASML uses XML Schema diagrams to intu-
itively express each element’s attributes and sub-element composition
in the scene model.

Application Scenario Mission Syntax Rules: In ASML, a scenario
mission is defined using the ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛⟩ element. The ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛⟩ element
includes basic information such as id, name, and describe, as well as
sub-elements for scenario mission attributes ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑃 𝑟𝑜𝑝𝑒𝑟𝑡𝑦⟩ and a
task set ⟨𝑇 𝑎𝑠𝑘⟩, where the ⟨𝑇 𝑎𝑠𝑘⟩ element can contain one or more in-
stances. The ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑃 𝑟𝑜𝑝𝑒𝑟𝑡𝑦⟩ element includes the sub-elements
⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑒⟩, ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑇 𝑦𝑝𝑒⟩, ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑇 𝑖𝑚𝑒⟩, ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑜𝑟𝑑⟩,
⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝⟩, and ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡⟩, each of which must
appear exactly once. The values of the elements and attributes within
<Mission> are restricted by syntax rules. Specifically, the value of
⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑒⟩ must be of string type and limited to one of the fol-
lowing: ‘‘Allocated’’, ‘‘Unallocated’’, or ‘‘PartiallyAllocated’’. The value
of ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑇 𝑦𝑝𝑒⟩ must be of string type and restricted to one of the fol-
lowing: ‘‘Logistics’’, ‘‘Agriculture’’, ‘‘Rescue’’, or ‘‘HighwayPatrol’’. The
<MissionTime> element includes three sub-elements: ⟨𝑆𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒⟩,
⟨𝐸𝑛𝑑𝑇 𝑖𝑚𝑒⟩, and ⟨𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑇 𝑖𝑚𝑒⟩. The ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑜𝑟𝑑⟩ element includes
two sub-elements: ⟨𝐸𝑛𝑡𝑒𝑟𝑃 𝑜𝑖𝑛𝑡⟩ and ⟨𝐿𝑒𝑎𝑣𝑒𝑃 𝑜𝑖𝑛𝑡⟩. The value of
⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝⟩ must be one of the following: ⟨𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒⟩,
⟨𝐶𝑜𝐵𝑒𝑔𝑖𝑛⟩, ⟨𝐹𝑜𝑟𝑘⟩, or ⟨𝐽𝑜𝑖𝑛⟩. The ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡⟩ element con-
tains one or more ⟨𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑇 𝑦𝑝𝑒⟩ sub-elements.

⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛⟩ ∶∶= ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑃 𝑟𝑜𝑝𝑒𝑟𝑡𝑦⟩⟨𝑇 𝑎𝑠𝑘⟩+

⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑃 𝑟𝑜𝑝𝑒𝑟𝑡𝑦⟩ ∶∶= ⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑒⟩⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑇 𝑦𝑝𝑒⟩⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑇 𝑖𝑚𝑒⟩
⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑜𝑟𝑑⟩⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝⟩⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡⟩

⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑒⟩ ∶∶= 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 ∣ 𝑈𝑛𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 ∣ 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑
⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑇 𝑦𝑝𝑒⟩ ∶∶= 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑠 ∣ 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑒 ∣ 𝑅𝑒𝑠𝑐𝑢𝑒 ∣ 𝐻𝑖𝑔ℎ𝑤𝑎𝑦𝑃𝑎𝑡𝑟𝑜𝑙

⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑇 𝑖𝑚𝑒⟩ ∶∶= ⟨𝑆𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒⟩⟨𝐸𝑛𝑑𝑇 𝑖𝑚𝑒⟩⟨𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑇 𝑖𝑚𝑒⟩
⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝐶𝑜𝑜𝑟𝑑⟩ ∶∶= ⟨𝐸𝑛𝑡𝑒𝑟𝑃 𝑜𝑖𝑛𝑡⟩⟨𝐿𝑒𝑎𝑣𝑒𝑃 𝑜𝑖𝑛𝑡⟩

⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝⟩ ∶∶= ⟨𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒⟩ ∣ ⟨𝐶𝑜𝐵𝑒𝑔𝑖𝑛⟩ ∣ ⟨𝐹𝑜𝑟𝑘⟩ ∣ ⟨𝐽𝑜𝑖𝑛⟩
⟨𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡⟩ ∶∶= ⟨𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑇 𝑦𝑝𝑒⟩+

Resource Syntax Rules: In ASML, a resource is defined using the
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒⟩ element. The resource syntax inherits the structure of the
esource metamodel. A resource description consists of 6 elements. As
hown in Fig. 4, the resource’s XML Schema defines the legal building
locks of the XML document and defines the performance sub-elements.
he specific syntax rules of resources are as follows:

⟨𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒⟩ ∶∶= ⟨𝐼𝑛𝑓𝑜⟩⟨𝑆𝑡𝑎𝑡𝑒⟩⟨𝐷𝑜𝑚𝑎𝑖𝑛⟩⟨𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒⟩⟨𝑆𝑒𝑟𝑣𝑖𝑐𝑒⟩⟨𝐿𝑜𝑔⟩

Constraint Syntax Rules: Constraints include two types of con-
traints: resource constraints and environment constraints. Resource
onstraints describe the resource capabilities required by the UAV to
erform its mission. Environmental constraints describe the correspond-
ng mission environment information when the UAV performs its mis-
ion. The specific constraint syntax is described as follows:

⟨𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩ ∶∶= ⟨𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩|⟨𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩
⟨𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩ ∶∶= ⟨𝑀𝑜𝑣𝑒⟩⟨𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛⟩⟨𝑆𝑒𝑛𝑠𝑒⟩⟨𝑃𝑎𝑦𝑙𝑜𝑎𝑑⟩⟨𝐸𝑛𝑑𝑢𝑟𝑎𝑛𝑐𝑒⟩

⟨𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡_𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡⟩ ∶∶= ⟨𝑊 𝑎𝑦𝑃𝑜𝑖𝑛𝑡𝑠⟩⟨𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒⟩⟨𝑁𝑜𝐹 𝑙𝑦𝐴𝑟𝑒𝑎⟩⟨𝑆𝑎𝑓𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒⟩⟨𝑊 𝑒𝑎𝑡ℎ𝑒𝑟⟩
 q

6
able 6
rror message field and number.
Error message field Number Description
NOT_FOUND_MISSION 1000001 Mission element not found.
MULTIPILE_MISSION 1000002 There are multiple Mission elements.
UNKNOWN_ELEMENT 1000003 Element is undefined.
EMPTY_ATTRIBUTE 1000004 The attribute value is empty.
INVALID_CONTENT 1000005 The content is invalid.
EMPTY_CONTENT 1000006 The content is empty.
INVALID_FORMAT 1000007 The format is invalid.
MULTI_ELEMENT 1000008 There are multiple elements present.
MULTI_ATTRIBUTE 1000009 Multiple properties exist.
NOT_FOUND_ATTRIBUTE 1000010 Property not found.
NOT_FOUND_ELEMENT 1000011 Element not found.

n addition, in order to reduce the difficulty of writing the language, we
eveloped a graphical interface tool for the application scenario model-
ng function. The graphical interface can realize low-code programming
nd can generate and parse application scenario modeling language
ccording to user configuration. This tool is based on the Qt Creator
ntegrated development environment, uses the C++ programming lan-
uage combined with the MSVC compiler and provides support for tool
nterface design through Qt Design. However, the application scenario
odel for interface drawing may have errors when parsed into ASML.
or this reason, as shown in Table 6, we have defined common parsing
rror types to facilitate developers to locate and fix errors promptly.

.6. Parse model

The scenario parsing module is used for parsing the modeling lan-
uage of application scenarios for drone swarms. This includes the pars-
ng of the expected element set and the expected attribute set. The
xpected element set comprises all possible element types that may
ppear during parsing, while the expected attribute set is formed by
he collection of attributes for each element in the expected element
et. The parsing steps are as follows: first, parse all elements to form the
xpected element set; next, parse each element in the expected element
et to obtain all attributes of the elements, forming the expected at-
ribute set; then, determine whether the content of the elements meets
he format requirements and store the information; finally, based on the
arsing results, return the successful parsing result or error information
s the scenario parsing data.
Algorithm 1 illustrates the file parsing process of the application sce-

ario modeling language. Step 1: Global Parsing. First, verify whether
he drone swarm application scenario modeling file complies with XML
yntax standards, including basic rules such as tag closure and element
ame matching. Step 2: Element and Attribute Parsing. Validate
hether the file conforms to the semantics and specifications of the
pplication scenario modeling language designed in this study, ensuring
hat the elements or attributes belong to the expected element set or ex-
ected attribute set. Step 3: Content Parsing. Ensure that the element
ontent exists and meets the corresponding format requirements. For
xample, the time within the ⟨𝑇 𝑖𝑚𝑒⟩ tag must comply with the ISO8601
ate-time format. Step 4: Sub-element Parsing. Repeat the above pars-
ng steps to continue parsing the sub-elements of each element until all
lements are parsed and validated.

. Verification method

The UAV swarm verification ensures the safety, efficiency, and com-
liance of task execution through formal methods. Fig. 5 shows the ver-
fication process of the drone swarm application scenario. First, the sys-
em begins with an application scenario model that captures the behav-
or and interaction patterns of the drone swarm in specific tasks, such as
light path planning, task allocation, and communication modes. Subse-
uently, this scenario model is parsed to extract key scenario elements,

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Fig. 5. Scenario verification method framework.

.
Algorithm 1 File parsing process of the application scenario modeling
language.
Input: XMLElement: The XML document node
Output: Parse Result
1: if XMLElement == NULL then
2: return Results
3: end if
4: if !𝑖𝑠𝑉 𝑎𝑖𝑙𝑑(XMLElement) then
5: return Errors
6: end if
7: if XMLElement → name ∉ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑒𝑡 then
8: return Errors
9: end if
10: for 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑖𝑛 XMLElement → attributes do
11: if 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 ∉ 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑠𝑒𝑡 then
12: return Errors
13: end if
14: end for
15: if 𝑖𝑠𝑉 𝑎𝑖𝑙𝑑(XMLElement → content) then
16: return Errors
17: end if
18: for 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 XMLElement → elements do
19: if !𝑓𝑖𝑛𝑑𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(element → name) then
20: return Errors
21: else
22: parseXML(element)
23: end if
24: end for

including the states of the drones, dependencies between tasks, and
time constraints associated with those tasks. These elements are then
transformed into a timed automata model, which accurately describes
the state transitions of the drones during task execution along with their
time-related limitations.

Next, a set of properties is defined to constrain the behavior of the
drone swarm. These properties typically encompass temporal require-
ments (e.g., task completion deadlines), safety requirements (e.g., min-
imum safety distances between drones), and performance requirements
(e.g., communication latency and resource utilization efficiency). These
properties are expressed in formal logic to ensure that the task execu-
tion of the drone swarm aligns with expectations across various scenar-
ios.

Using the Uppaal verification tool, the framework conducts formal
verification of the timed automata. Uppaal can execute temporal logic
queries to verify whether the drone swarm can complete tasks within
specified time limits, whether task allocation is reasonable, whether
communication is synchronized in a timely manner, and whether po-
tential collisions or task failures can be avoided. This entire process
provides robust safety and correctness assurances for the task execution
of the drone swarm.

4.1. Scenario element extraction

The extraction of scenario elements is a critical step in translating
high-level scenario models into precise, actionable components for for-
mal verification. The goal is to decompose the abstract description of
7
the drone swarm’s tasks, interactions, and environmental constraints
into concrete elements that can be used to construct a timed automata
model. This process ensures that the various aspects of drone behavior,
such as task execution, state transitions, and inter-drone communica-
tions, are accurately captured and formally represented.

First, task decomposition breaks down complex mission objectives
into smaller, more manageable sub-tasks. Each sub-task is treated as an
independent element, with clearly defined start and end conditions, as
well as specific time and resource requirements. For instance, a mission
involving environmental monitoring might be decomposed into sub-
tasks such as entering the monitoring zone, performing the monitoring,
and exiting the zone. Each of these stages becomes a distinct element
in the model, enabling more precise control over task execution.

Next, the state of each drone is extracted to capture the various
stages of task execution, such as ‘‘idle’’, ‘‘in-flight’’, or ‘‘performing
task’’. These states are critical for accurately modeling the dynamic
behavior of the drones within the swarm. Additionally, interaction and
synchronization events between drones are identified, especially in sce-
narios that require collaboration, such as data sharing or coordinated
task execution. These interactions are formalized as events in the model
to ensure proper synchronization and communication during mission
execution.

Another crucial component of scenario element extraction is the
identification of time constraints. Timely execution is often essential in
drone swarm missions, and these constraints are represented through
timed automata’s clock variables and guards. For example, if a monitor-
ing task must be completed within a certain time frame, this constraint
is captured and enforced in the model.

Finally, external conditions and environmental interactions are ex-
tracted. Drones not only interact with each other but also with the ex-
ternal environment, which may include obstacles, weather conditions,
or dynamic mission parameters. These elements are modeled to repre-
sent external influences on the swarm’s task execution. Additionally,
dependencies between tasks are identified and extracted, ensuring that
task sequencing and synchronization are accurately reflected in the for-
mal model.

4.2. Transformation rules for timed automata

Scenario element extraction provides the foundation for construct-
ing timed automata by decomposing high-level system behaviors—such
as tasks, drone states, interactions, time constraints, and environmen-
tal conditions—into precise, formal components. These elements are
mapped directly onto the timed automata model, where tasks are rep-
resented as states, interactions as synchronization events, and time con-
straints as clock variables and guard conditions. Task dependencies and
state transitions are formalized into automaton transitions, ensuring
that the dynamic behavior and temporal requirements of the drone
swarm are accurately captured. This structured extraction-to-conversion
process ensures that the system’s real-world behavior is faithfully mod-
eled, enabling thorough analysis during formal verification while main-
taining consistency between the scenario model and the timed automata
As shown in Fig. 6, the three component models of the application
scenario – task model, resource model, and constraint model – can be
converted into corresponding timed automaton networks according to
the conversion rules.

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Fig. 6. Timed Automata Transformation Rules.
The timed automaton network is composed of Task timed automata,
drone timed automata and constrained timed automata connected to
each other. The state of each timed automaton is abstracted from the
behavior of the system. The transition conditions of task automata are
mainly composed of the time consumption between tasks, so the tran-
sition conditions of task time automata are extracted and converted
according to the time-related attributes of the Mission model. Tran-
sitions in the drone automaton are determined by the power-related
properties in the resource model. In contrast, the constraint model’s
endurance governs transitions in the constraint automaton on time and
power.

4.2.1. Model transformation rules
Conversion of mission model to task-timed automata. The mis-

sion model describes the order, dependencies, duration and other infor-
mation of tasks. Convert the mission model into a task time automaton,
mainly by defining the various states of the task and their transforma-
tion relationships.

For the mission model, it contains a task set {𝑡1, 𝑡2,… , 𝑡𝑛
}

, each
of these tasks contains the following properties: task start state, task
execute state, task end state, task duration and task dependencies re-
lationship. The conversion process from a task model to a task-time
automaton first requires initializing the task-time automaton. The ini-
tialization of the task-time automaton is to create the state of the task-
time automaton for each task 𝑡𝑖. These states include the task’s state
attributes, start state, execution state and end state. Next, the task’s
time constraints and dependencies are converted into the transition of
task time automata. If the execution time of the task is within the time
window constraint, the migration is from task start to task execution.
If the completion of the task is still less than the end time specified by
the task, it means that the task has been completed—transition from
task execution state to task end state. Dependencies between tasks are
realized through the synchronization of task time automata. If there is
a timing relationship (𝑇𝑖, 𝑇𝑗) between task 𝑇𝑖 and task 𝑇𝑗 , then the task
time automaton start state of 𝑇𝑗 must wait until the end of task 𝑇𝑖 before
it can start execution.

Conversion of resource model to drone-timed automata. The
drone model captures the resource dynamics, such as drone availability,
task execution, and battery management. The transformation process
generates Drone Timed Automata (DTA) for each drone, ensuring that
drone states align with task execution needs. The resource model in-
cludes a UAV set 𝐷 =

{

𝑑1, 𝑑2,… , 𝑑𝑛
}

, each characterized by Idle state,
Cruising state and Inspecting state. These states initialize the drone
timed automaton as the state of each drone timed automaton. Next,
the power constraints of the resource model are extracted as the tran-
sition conditions of the UAV time automaton. If the power can meet
the task execution requirements, the drone will migrate from idle state
to cruising state. In the cruising state, if the drone’s power is sufficient
to meet the mission execution requirements, it will reach the mission
execution state.

Conversion of constraint model to constraint-timed automata.
The constraint model defines temporal and dependency restrictions on
task execution. The transformation generates Constraint Timed
Automata (CTA) ensuring tasks are executed within defined limits. The
8
resource model includes constraint set 𝐶 =
{

𝑐1, 𝑐2,… , 𝑐𝑛
}

. These con-
straints include time, battery power, and no-fly zone limits. For each
constraint 𝑐𝑖, corresponding states and transitions are created according
to different constraint types. For time limit type and no fly zone con-
straints 𝑐𝑖, add time constraints in task automata and constrained au-
tomata: if a task 𝑡𝑖 must be completed within time 𝑡𝑙𝑖𝑚𝑖𝑡, add a transition
time constraint. If the task fails to be completed within the specified
time, then trigger an Error state. For the power type constraint 𝑐𝑖, add
power constraints to the drone automaton and constrained automata:
if a drone must be within the power 𝑝𝑙𝑖𝑚𝑖𝑡 to complete the task, add a
transition power constraint. If the drone fails to complete the task, If
the task is executed under the specified power, the Error state will be
triggered.

4.2.2. Synchronization rules for timed automata.
Task-Drone Synchronization. Task Start: For each task 𝑡𝑖 in the

Task timed automata, ensure synchronization with the corresponding
drone state 𝑑𝑗 . When the task automaton is in the starting state, the
drone automaton needs to be synchronized to the Cruising state. Upon
task completion, synchronize the transition to the drone’s idle state,

Task-Constraint Synchronization, The execution of the task is con-
trolled by time and no-fly zone constraints, and the task automata and
the constraint automata must trigger the transition at the same time.
The execution of the task is controlled by time constraints, and the task
automaton and the constrained automaton must trigger the transition
at the same time. When the task automaton is in the starting state, the
constrained automaton is also in the running state. If the task is not
completed within the time limit, the task automaton enters the Error
state and the constraint automaton enters the TimeoutError state. No-
fly zone constraints and time constraints have similar synchronization
rules.

Drone-Constraint Synchronization. If the drone’s status is limited
by battery power, etc., it must be synchronized to the status of the
battery error in the constrained automaton.

4.3. Property extraction and verification with UPPAAL

The process of property extraction is crucial for defining the sys-
tem’s behavioral and temporal constraints, which serve as formal speci-
fications for verification. Properties typically encompass timing require-
ments, safety conditions, and performance metrics, all of which are
derived from the drone swarm’s mission and operational context. These
properties are expressed in temporal logic, allowing them to be rigor-
ously tested using model-checking tools like UPPAAL. By formalizing
these requirements, the system’s expected behaviors—such as complet-
ing tasks within deadlines, maintaining safe distances between drones,
and ensuring synchronized communication—are made explicit and
ready for verification.

In the drone swarm verification framework, several key properties
must be extracted and formally verified to ensure safe, efficient, and
correct system behavior. These properties, expressed in temporal logic,
fall into two main categories: safety properties, liveness properties.
Each type of property addresses a specific aspect of the system’s op-
eration, and their verification guarantees that the system adheres to
the required constraints in various mission scenarios.

M. Zhang et al.

The Journal of Systems & Software 226 (2025) 112416
Safety Properties. Safety properties ensure that the drone swarm
operates without violating critical safety constraints, such as preventing
collisions or maintaining safe operational boundaries. These properties
define the conditions under which tasks can be executed safely, such as
ensuring drones maintain a minimum distance from each other to avoid
collisions, or ensuring that critical system checks are completed before
initiating flight. Safety properties are crucial for preventing hazardous
states in the system, and are typically expressed as invariants that must
always hold during mission execution.

In addition to ensuring collision avoidance and system consistency,
safety properties in the drone swarm framework can include constraints
on time windows and operational conditions under low power. For in-
stance, safety properties can enforce that tasks are completed within a
specified time window, preventing drones from running tasks that ex-
tend beyond their operational deadlines. Furthermore, low-power safety
properties ensure that drones do not engage in or continue tasks when
their battery levels fall below a predefined threshold, thereby prevent-
ing failures due to power depletion. These properties are crucial for
maintaining system robustness, ensuring that drones operate within safe
temporal and energy constraints, and avoid scenarios that could lead to
mission failure or unsafe behavior.

Liveness Properties. Liveness properties guarantee that the system
will eventually progress and complete its tasks, avoiding deadlock or
indefinite waiting. These properties ensure that tasks, once started, will
be completed, and that the system will continue to transition between
states as expected. For example, a liveness property might specify that
a task will eventually be finished, ensuring that the drone swarm does
not get stuck in an incomplete or idle state. Liveness properties are
essential for ensuring that the system remains functional and capable
of achieving its objectives.

Once the properties are extracted, the UPPAAL verification process
begins. UPPAAL, a model-checking tool for timed automata, is used
to validate that the system satisfies the extracted properties under all
possible scenarios. This is done by encoding the system model and its
properties into UPPAAL’s query language, where temporal logic expres-
sions are used to check the model’s adherence to the specified require-
ments. For instance, a timing property might be checked by querying
whether a specific task is always completed within its deadline, while
safety properties can be verified by ensuring that drones never violate
the minimum separation distance during their operations.

UPPAAL’s model-checking algorithm exhaustively explores all po-
tential states of the system model, analyzing whether the system can
violate any of the specified properties under any conditions. If a viola-
tion is detected, UPPAAL provides a counterexample, illustrating the se-
quence of events leading to the failure. This feedback allows designers
to refine the system model or modify its properties, thereby improv-
ing the overall design. The verification process ensures that the sys-
tem meets its timing, safety, and performance requirements, providing
strong assurances of its reliability and correctness before deployment.

5. Case study

5.1. Highway inspection scenarios

Highway inspection refers to the process of surveying and monitor-
ing highways and their associated facilities to evaluate their condition.
Fig. 7 shows a scenario of a highway inspection mission. The highway
inspection scenarios can be categorized into two types: road inspection
and slope inspection. These tasks have a sequential relationship and
are performed sequentially. This scenario contains five tasks, namely
three road inspections and two slope inspections. In addition, this sce-
nario also includes a no-fly zone outside the inspection mission, which
represents the area that the drone needs to avoid entering when per-
forming its mission. Due to the wide distribution and complex environ-
mental structure of highways, a single UAV faces challenges such as
long operation times and low efficiency during inspections. Therefore,
9
Table 7
Comparison of different modeling languages.
 Language Task Resource Resource

constraint

 GML (Jia et al., 2022) ✓ × ×
 SL4U (Zhao et al., 2024) ✓ × ×
 ASML ✓ ✓ ✓

in practice, a multi-UAV cooperative approach is required for highway
inspections. In this paper, we developed detailed models of highway
inspection scenarios and rigorously validated the flight mission plan-
ning results. Our work emphasizes the accuracy and effectiveness of the
proposed planning strategies, ensuring that the models align with real-
world conditions and deliver optimal performance in practical highway
inspection operations.

5.1.1. Language comparison
We compare the descriptive capabilities of the ASML UAV scene

modeling language with those of two other general UAV swarm model-
ing languages. As illustrated in Table 7, ASML offers detailed descrip-
tions of resource capabilities and constraints. In contrast, the other two
languages are limited to describing task execution within logistics sce-
narios and lack the ability to provide a granular depiction of resource
capabilities and constraints.

5.1.2. Mission
This mission model outlines a drone-based highway patrol mission,

which is scheduled to begin at 5:00 a.m. on August 28, 2024, with a
planned duration of 1.5 h. The drone will navigate along a pre-defined
route while carrying a camera for inspection purposes. It will execute
the assigned tasks in a specified sequence. As illustrated in Fig. 8, the in-
spection paths for the road and slope inspection tasks overlap in certain
areas. To resolve this overlap, a sequential dependency is introduced
between the tasks. Specifically, task 3 can only be initiated once task 0
has been completed, and task 4 depends on the successful completion of
task 2. This approach ensures that there is no task interference during
the mission and that resources are allocated efficiently.

Table 8 provides a comprehensive summary of the key components
of the highway inspection scenario. The overall mission consists of three
road inspection tasks and two slope inspection tasks. The road inspec-
tion tasks are classified as line-type tasks, where the drone follows lin-
ear paths along the highway, while the slope inspection tasks are
surface-type tasks, requiring a broader coverage of sloped areas adja-
cent to the highway. The road inspection tasks are estimated to take
approximately 25 min each, whereas the slope inspection tasks are pro-
jected to last around 30 min each. Collectively, these tasks are designed
to be completed within the allocated 1.5-hour mission window, ensur-
ing that the drone efficiently patrols and inspects both road and slope
areas without exceeding the time constraints.

5.1.3. Resource
Fig. 9 illustrates the comprehensive resource model essential for

the drone highway inspection mission. This model provides a detailed
overview of the status and performance capabilities of the quadcopter
UAV, referred to as UAV0. The drone is equipped with a maximum hor-
izontal flight speed of 25 meters per second, enabling efficient coverage
of long highway sections within a short time frame. Its communication
system supports a maximum signal range of 10.5 kilometers, ensuring
that the drone remains in constant contact with the control center or
monitoring personnel over a significant operational radius.

In terms of payload, UAV0 can carry up to 1.5 kilograms, which is
sufficient to support the necessary mission equipment, including a high-
definition camera for continuous monitoring and filming. The drone’s
endurance is another critical factor, with a flight duration of up to
45 min on a single charge or fuel cycle. This endurance is aligned with

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Fig. 7. Set up for highway inspection scenario.
Fig. 8. ASML for mission.
Table 8
Composition of highway inspection scenario tasks.
 Task attribute Task0 Task1 Task2 Task3 Task4
 Task State allocated allocated allocated allocated allocated
 Task Type Road Road Road Slope Slope
 Task Time 05:00-05:25 05:25-05:50 05:00-05:25 06:00-06:30 06:00-06:30
 Task Terminal 1 1 1 1 1
 Task Requirement Camera Camera Camera Camera Camera
 Task Behavior TAKE_PHOTO TAKE_PHOTO TAKE_PHOTO TAKE_PHOTO TAKE_PHOTO
 Task Target line line line plane plane

the planned inspection tasks, allowing the drone to perform substantial
portions of the highway patrol without the need for frequent recharging
or refueling.

The service window for the drone is also a vital consideration in mis-
sion planning. UAV0 is available for deployment between 4:00 a.m. and
4:00 p.m. daily, providing a 12-hour operational window. This schedule
ensures that all mission-critical tasks can be carried out during daylight
hours, optimizing visibility for both road and slope inspections. The
resource model is designed to facilitate efficient utilization of UAV0
within these time constraints, ensuring that the drone’s capabilities are
maximized while adhering to the required time frame.
10
5.1.4. Constraint
The drone highway inspection constraint model is composed of three

critical components: endurance, waypoints, and safe distance. These
constraints are essential to ensure the successful and safe execution of
drone-based highway inspection missions, providing a framework for
mission planners to optimize resource utilization, enhance operational
efficiency, and mitigate potential risks.

The endurance constraints outline the drone’s operational limits in
terms of flight time and power consumption for different inspection
tasks. Specifically, the model defines distinct endurance parameters for
road inspection and slope inspection missions. As shown in Fig. 10, for

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Fig. 9. Resource information for UAV0.
,
road inspections, the maximum flight time is limited to 25 min, with
a corresponding power consumption of 8000 mA. In contrast, slope
inspections allow a slightly longer flight duration of 30 min, with a
power consumption of 9000 mA. These endurance parameters are cru-
cial for mission planning, as they directly impact task scheduling and
battery management. Since the drone’s power reserves are finite, care-
ful planning is necessary to ensure that the tasks are completed within
the available flight time and energy limits. If these constraints are not
properly managed, there is a risk of mission failure due to the drone
running out of power mid-flight, which would not only disrupt the
mission but also potentially endanger the drone’s integrity.

Waypoint constraints define the geographical path the drone must
follow during the inspection mission. Each waypoint is associated with
specific longitude, latitude, and altitude coordinates that mark the key
points along the drone’s route. Additionally, the connectivity matrix
for each waypoint specifies its link to other waypoints, ensuring the
drone follows a structured and logical flight path. This connectivity en-
sures that the drone moves seamlessly between pre-defined waypoints,
reducing the chances of deviating from the mission path or encounter-
ing obstacles. Furthermore, the connectivity matrix allows for flexible
path planning, where the drone can adapt to specific mission require-
ments or environmental factors, such as avoiding restricted areas or
adjusting the flight route in response to real-time data. The waypoint
constraints also facilitate efficient coverage of the inspection area, al-
lowing for more comprehensive monitoring of both the road surface
and surrounding infrastructure, such as slopes and embankments.

The safe distance constraints play a critical role in ensuring the
drone’s operational safety during the mission. The model defines the
minimum horizontal distance and the minimum and maximum flight
altitudes the drone must maintain throughout its flight. The minimum
horizontal distance is set at 0.5 m, ensuring that the drone remains
at a safe distance from obstacles, such as buildings, bridges, or other
vehicles on the highway. Additionally, the model specifies a minimum
altitude of 5 meters and a maximum altitude of 200 m, which ensures
the drone stays within safe airspace boundaries while avoiding inter-
ference with ground activities and other aerial operations. These al-
titude constraints are particularly important in urban or semi-urban
highway environments, where airspace can be congested, and infras-
tructure, such as overpasses or power lines, pose potential hazards.
By adhering to these safe distance parameters, the drone can operate
without risking collisions or violating aviation regulations.
11
5.2. Experiment platform and result

To verify the validity of the scenarios constructed by ASML, this
paper configures a UAV simulation environment and conducts corre-
sponding real-aircraft testing. The experiment’s hardware and software
setup includes an Intel(R) Core(TM) i7-9700 CPU, 16 GB of memory,
Ubuntu 20.04 as the operating system, Robot Operating System (ROS)
Noetic as the robotic middleware, and Gazebo 11.11.0 for the simula-
tion environment.

Additionally, we leverage the concept of digital twins to simulate
UAV models, ensuring that the simulation models closely approximate
real UAVs. Specifically, we utilize the P600-Allapark2-RTK-G1-S3 UAV
model, independently developed by the AMOVLAB. The modeling pro-
cess comprehensively considers various aspects of the real UAV, includ-
ing geometry, physics, flight control, flight performance, and endurance
capabilities. This approach enables highly accurate replication of the
real UAV’s behavior within the simulation environment.

For the experimental task scenarios, we selected a section of a high-
way for inspection and modeled it to ensure task diversity. Following
an on-site survey, we modeled inspection scenarios for three highway
segments and two slopes. Additionally, we employed a multi-UAV col-
laborative inspection strategy to enhance the operational complexity of
the UAVs, ensuring a realistic and challenging simulation environment.

The simulation results are presented in Fig. 11, the UAV team (UAV1
UAV2 and UAV3) will work together to complete the mission and even-
tually return to the designated point. As depicted in Fig. 11, for the
inspection of a highway, two drones are located at different locations
to inspect the road and slopes. Two drones will not simultaneously
perform slope and road inspections of the same segment to prevent col-
lisions. After flying through the entire simulation planning process, the
drone successfully completed the assigned scene tasks without collision.

5.3. Verification

5.3.1. UPPAAL models
We convert the logistics UAV swarm application scenario model into

a UPPAAL timed automaton network. The Timed Automata Network
of the entire drone application scenario system (TANDAS) can be rep-
resented as the inner product of timed automata processes. Based on

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Fig. 10. ASML for constraint.
Fig. 11. Schematic diagram of highway scenario simulation.
the understanding and abstraction of UAV swarm application scenar-
ios, the task planning and execution process of a UAV application sce-
nario can be described as a timed automaton network. As shown in
Formula (5), TANDAS consists of a drone network composed of three
timed automata: the task timed automata, the drone timed automata,
and the constraint timed automata.

𝑇𝐴𝑁𝐷𝐴𝑆 = 𝑇 𝑎𝑠𝑘𝑇𝐴‖𝐷𝑟𝑜𝑛𝑒𝑇𝐴‖𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑇𝐴 (5)

5.3.2. Task timed automata
The task timed automaton simulates the process of task execution

in the drone application scenario. As shown in Fig. 12, the task timed
12
automata consists of three states: Ready, Executing, and Error. The run-
ning process of the automaton is that the tasks have been assigned first
and are initially in the Ready state waiting to be executed. When a task
is executed, it enters the Executing state, and the task execution time
continuously increases. If the task completion time is less than the task
end time, it returns to the Ready state to proceed with the next task.
Otherwise, if the task exceeds its execution deadline, it enters the error
state due to timeout, and interacts with the constraint automaton, send-
ing a timeout error signal. Below we introduce task-time automata’s
state and the meaning of transitions.

S1: Ready State: A state in which task assignment is completed but
execution has not yet started. In this state, the mission planning result

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Table 9
Transition descriptions of task-timed automata.
 Number Transition Description
 1 S1→S1 This transition involves the initialization of task attributes,

including task allocation results and task execution time.

 2 S1→S1 This transition checks task dependencies to ensure they are satisfied.
 3 S1→S2 Once execution conditions are met, the task transitions to the

execution state.

 4 S2→S1 The task is completed by DroneTA within the specified time
window and returns to the Ready state.

 5 S1→S1 After all tasks in the UAV group application scenario are completed,
ConstraintTA resets the tasks, and TaskTA reinitializes them to
evaluate the planning results for the next application scenario.

 6 S1→S3 During the waiting process, if the task remains in a Ready state and
the overall execution time exceeds the defined time window
(endTime), a timeout error occurs, leading to the Error state and
triggering a timeout exception signal to ConstraintTA.

 7 S2→S3 If the task execution time exceeds the endTime during its operation,
the system transitions to the Error state and sends a timeout
exception signal to ConstraintTA.

 8 S1→S3 The system receives an exception signal broadcast by ConstraintTA,
indicating a drone-related issue, which interrupts task execution
and causes the system to enter the Error state.

 9 S2→S3 The system receives an exception signal broadcast by ConstraintTA,
indicating a drone-related issue, which interrupts task execution
and causes the system to enter the Error state.

 10 S3→S1 In the event of an Error state, the system resets and re-executes the
scenario task from the beginning.

Fig. 12. Highway inspection scenario task timed automata.
assigns a specific UAV to the task, and the task will wait for its own
time constraints and dependency constraints to be satisfied.

S2: Executing State: The task is being executed by the specified
drone. In this state, it indicates that the mission is proceeding nor-
mally and the drone is performing operations according to the mission
requirements.

S3: Error State: The state of abnormal arrival when the scene is
running. In this state, it indicates that there is a problem with the task
planning, and the specific error cause is triggered from the migration
condition and broadcast to the constrained automaton.

Task time automata state transitions can be classified into two main
categories: those that occur during normal task execution and those that
occur during abnormal execution. Transitions 1–5 are associated with
normal task execution, and transitions 6–10 represent relevant transi-
tions that occur when task execution times out. The specific transition
meaning is shown in the Table 9.
13
5.3.3. Drone timed automata
The drone timed automata simulates the dynamic process of battery

power changes during the drone’s task execution. To perform tasks,
UAVs need to go through three states: Idle, Cruising, and Inspecting.
As shown in Fig. 13, the drone is first in the Idle state, waiting to take
off to perform its mission. Then the drone enters the cruising state and
reaches the mission location that the drone needs to perform. Finally,
the drone performs the assigned tasks in the inspection state. During
the flight of the UAV, the battery power changes dynamically with the
flight. When the UAV is in low battery, it enters the Error state and
synchronously sends a low battery error signal to the constrained timed
automata. The detailed description of the state and transition of the
drone time automaton is as follows:

S1: Idle State: The task has been assigned to the drone, but the
drone has not started taking action. In this state, the mission planning
results assign the drone a specific list of tasks to be performed. After
starting the action, the drone is ready to take off.

S2: Cruising State: The drone is flying along a preset path in the
air. In this state, it indicates that the drone is cruising between tasks,

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Table 10
Transition descriptions of drone-timed automata.
 Number Transition Description
 1 S1→S1 The system initiates the drone’s attribute parameters, including

power levels and other essential configurations.

 2 S1→S2 The drone ascends and transitions into a cruising state.
 3 S2→S3 Upon completing the cruise, the drone reaches the task execution

location, where it sends an execution signal and updates its battery
status simultaneously.

 4 S3→S2 After the current task is completed, the task list is updated,
preparing the UAV to execute the subsequent assigned task.

 5 S2→S2 Update the position, time consumption, and power consumption of
the UAV based on predefined waypoints, and determine whether
the current location is within a no-fly zone to update the
inNoFlyArea flag accordingly.

 6 S2→S1 Upon completion of all tasks, the system returns to the Idle state
and broadcasts a check signal to ConstraintTA to verify the
completion of the overall plan.

 7 S1→S1 Once the plan is confirmed as completed, ConstraintTA initiates a
system reset, leading to the reset and reinitialization of DroneTA.

 8 S2→S4 Upon receiving a system exception signal broadcast by
ConstraintTA, the system transitions to the Error state. A task
timeout will cause the entire system to terminate.

 9 S2→S4 When inNoFlyArea == 1, indicating that the current location is
within a no-fly zone, the system enters the Error state and sends a
no-fly error signal to the ConstraintTA.

 10 S2→S4 If the drone’s battery power falls below the LowPower threshold
after task execution, the system transitions to the Error state, and a
low power exception signal is sent to ConstraintTA.

 11 S3→S4 If the battery power is below the LowPower threshold after
completing the cruise, the system enters the Error state, and a low
power anomaly signal is transmitted to ConstraintTA.

 12 S3→S4 Upon receiving a system exception signal broadcast by
ConstraintTA, the system transitions to the Error state. A task
timeout will cause the entire system to terminate.

 13 S4→S1 In the Error state, ConstraintTA initiates a system reset, which
synchronously resets DroneTA and triggers reinitialization.

r
that is, from the execution area of one task to the execution area of
another task.

S3: Inspecting State: The drone is performing a mission. This state
indicates that the drone is performing the tasks assigned by the mission
planning.

S4: Error State: The state reached when the drone operates abnor-
mally.

The transition of DroneTA illustrates the changes in the drone’s powe
state as it executes its mission. Table 10 shows the implications of drone
automaton transition. Transitions 1–6 represent the state transforma-
tions that occur during normal mission execution by the UAV. In con-
trast, Transitions 7–11 describe the state transitions triggered by abnor-
mal conditions, such as low battery, encountered during the mission.

5.3.4. Constraint timed automata
The constraint timed automata describe the operation of the en-

tire drone swarm application scenario. As shown in Fig. 14, the drone
swarm is first in the Running state. If all tasks are finally completed, the
constrained automaton reaches the Finish state. Otherwise, if a timeout
or low power error occurs during task execution, it will enter the Time-
out state and LowPower state respectively. The meaning of each state
and transaction is introduced below.

S1: Running State: The drone and mission are in normal operating
conditions. The UAV swarm application scenario task has been assigned
to the UAV, and the UAV is performing the task normally.

S2: Finish State: A state in which the drone successfully completes
all tasks. In this state, the drone completed all application scenario tasks
according to the planned results, and no errors occurred.
14
S3: Timeout State: The task is not completed within the specified
time. Each task has a specified start time and end time. If the task is
completed beyond the end time, a timeout error will occur.

S4: NoFlyArea State: If a flight deviation occurs during the UAV’s
approach to the task execution point, it will enter a no-fly zone.

S5: LowPower State: The battery of the drone is insufficient to
continue the mission. Under normal circumstances, a drone should have
sufficient power to complete its assigned tasks. However, in abnormal
situations, the drone may encounter insufficient power, resulting in un-
finished tasks.

As shown in Table 11, the timed automata effectively manage the
drone’s various states during the inspection mission through state tran-
sitions, including normal operation, task completion, and error han-
dling. This ensures the smooth execution of the mission and timely
recovery from any faults or errors.

5.3.5. Property verification
We use UPPAAL’s model validator to verify the properties of logis-

tics drone swarm temporal automata networks. UPPAAL is one of the
most widely used model checking tools for timed automata. UPPAAL
uses TCTL to define the syntax of the property verification specification
language. Verifiers only need to write corresponding query statements
to verify the properties of the system.

Specifically, we verify two major types of properties: safety, and
liveness. All verification properties are represented using TCTL. We can-
not verify the collaborative properties of multiple UAVs, such as two
UAVs moving an object simultaneously. Below we describe in detail
the properties that require verification.

Safety: Safety properties mean that something bad will never hap-
pen. In the UAV swarm application scenario, due to the dependencies

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Fig. 13. Highway inspection scenario drone timed automata.
Table 11
Transition descriptions of constraint-timed automata.
 Number Transition Description
 1 S1→S1 The system receives a check signal from DroneTA to verify whether

all planned tasks have been completed.

 2 S1→S2 If all tasks are successfully completed, the system transitions to the
Finish state, indicating the successful execution of all plans.

 3 S2→S1 If not, the system resets, continues executing the newly planned
application scenario, and broadcasts the reset signal to both
DroneTA and TaskTA.

 4 S1→S3 Upon receiving a timeout exception signal from TaskTA, the system
transitions to the Timeout state, indicating task execution has timed
out.

 5 S3→S3 The system broadcasts an errorHappen signal upon detecting an
abnormal situation, causing the entire system to transition to the
error state and halt the current application scenario.

 6 S3→S1 After an exception, the system resets and re-executes the
application scenario automata network.

 7 S1→S4 Upon receiving the no-fly exception signal from DroneTA, the
system enters the NoFlyArea exception state.

 8 S2→S2 The errorHappen signal is broadcast, and the entire system
transitions to the Error state.

 9 S4→S1 In the exception state, the ConstraintTA resets the system.
 10 S1→S5 If DroneTA signals a low battery, the system enters the error state.
 11 S5→S5 The system broadcasts an errorHappen signal upon detecting an

abnormal situation, causing the entire system to transition to the
error state and halt the current application scenario.

 12 S5→S1 After an exception, the system resets and re-executes the
application scenario automaton network.

between tasks and execution time window constraints, if the execution
of the previous task exceeds the planned execution time, the start exe-
cution time of subsequent tasks will not be met, resulting in a time con-
flict. Therefore, Formula (6) verifies whether there is a timeout during
task execution, thereby determining whether task planning is proceed-
ing as expected without time conflicts causing collisions.

𝐸⟨⟩ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑇𝐴.𝑇 𝑖𝑚𝑒𝑜𝑢𝑡 (6)

Formula (7) verifies that the UAV will not be in a low power state
during mission execution. During the flight of the drone, the power
is continuously consumed as the task is performed. When the drone
is allocated, the power is used to evaluate whether it can complete
the task. Therefore, the battery of the drone should not be low during
15
the mission, which will lead to safety issues such as being unable to
return.

𝐸⟨⟩ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑇𝐴.𝐿𝑜𝑤𝑃𝑜𝑤𝑒𝑟 (7)

Formula (8) verifies that the drone will not enter the no-fly zone
during its mission. This constraint is crucial to ensure the drone’s oper-
ational safety, particularly when performing inspections or other tasks
near sensitive or hazardous areas. The no-fly zone, often established
due to regulatory restrictions, hazardous conditions, or potential risks
to the drone or surrounding environment, must be avoided at all
times.

(8)
𝐸⟨⟩ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑇𝐴.𝑁𝑜𝐹 𝑙𝑦𝐴𝑟𝑒𝑎

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Fig. 14. Highway Inspection scenario constraint timed automata.

Table 12
UPPAAL verification results.
 Property type Formula number Verification results

Safety

(15) not Satisfy this property
 (16) not Satisfy this property
 (17) not Satisfy this property
 Liveness (18) Satisfy this property

Liveness: Liveness properties indicate that something good will
eventually happen. Formula (9) indicates that for all tasks planned in
the UAV swarm application scenario, the UAV swarm can eventually
complete it.
𝐸⟨⟩ 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑇𝐴.𝐹 𝑖𝑛𝑖𝑠ℎ (9)

Table 12 shows the verification results of the above properties. Since
the verification of security is to set an unsafe state in the timed au-
tomaton, it is judged whether the state is reachable by traversing the
automaton. If it is unreachable, the system is safe. For the low-power
and timeout unsafe states in the automaton, verification shows that the
properties are not met, that is, the state is unreachable. This shows that
drone scenario planning is safe. For the liveness properties, the verifier
returned a result that satisfies the attribute, indicating that the UAV
group scenario mission planning can be finally completed.

6. Related work

6.1. Single UAV mission description

A UAV swarm consists of numerous individual UAVs, making the de-
scription of each UAV’s mission fundamental to the swarm as a whole.
To capture the wide range of tasks carried out by individual UAVs
across various applications, researchers often employ specific task de-
scriptions to outline the roles and actions of these UAVs.

The individual task description was originally framed using the way-
point list method (Brumitt and Stentz, 1998), which treats each task
as a waypoint that the robot must pass through, along with specifying
the action to be performed at that location. However, this approach
is rigid and struggles to adapt to dynamic mission environments, es-
pecially when obstacles are present. To address this, Konolige (1997)
developed the COLBERT robot control language, utilizing a Finite State
Machine (FSM) structure with iteration, sequencing, and conditional
logic. Building on this concept, Tousignant et al. (2012) introduced
the XRobots language, which employs hierarchical state machines and
defines states as robot behaviors. This approach resolves the scalability
and maintenance issues inherent in FSMs as the complexity and number
of robot behaviors increase.
16
To enhance the adaptability of UAVs in dynamic environments,
Molina et al. (2017) developed a task-based mission specification lan-
guage (TML) specifically for search and rescue operations. TML orga-
nizes tasks hierarchically using a tree structure. Building on this con-
cept, Lan et al. (2018) adopted behavior trees as the core framework
for representing and executing complex task plans. Similarly, Li et al.
(2019) introduced a real-time sensing UAV mission system integrated
with the ROS, where behavior trees are employed as decision-making
mechanisms to manage both flight behaviors and contextual changes in
real-time.

In single-drone tasks, task description languages often exhibit rigid-
ity in expression, hindering the drone’s ability to adapt to changing
task environments and leading to limitations such as inflexible route
adjustments. In contrast, our proposed description language is specif-
ically designed for UAV swarms, providing enhanced capabilities for
complex task descriptions along with comprehensive resource and en-
vironmental representations.

6.2. UAV swarm mission description

The UAV swarm mission description language provides a framework
for defining collaborative tasks among multiple UAVs, detailing the ac-
tions each UAV must perform, as well as the interdependencies between
these actions. Approaches for describing UAV swarm missions can be
categorized into three types: quasi-programming languages, declarative
markup languages, and graphical interfaces.

Programming-like language: Programming-like languages resem-
ble traditional programming languages in their syntax and structure but
are designed for purposes other than general computer programming.
These languages allow users to define domain-specific rules, logic, or
procedures, enabling the programmatic expression of complex tasks or
operations. Merino Merino et al. (2005) introduced a framework for
collaborative fire detection using heterogeneous UAV formations, ap-
plied within the multi-UAV project COMETS, though UAVs had to be
adapted to function within this framework. Dantu et al. (2011) de-
veloped Karma, a system for programming and managing micro-UAV
swarms. Dedousis and Kalogeraki (2018) presented PaROS (PROgram-
ming Swarm), a framework for programming both UAV swarms and in-
dividual UAVs, offering developers abstract swarm programming prim-
itives to simplify drone swarm control and reduce the complexity of
low-level programming. Similarly, Mottola et al. (2014) proposed the
VOLTRON team-level programming model, which dynamically allocates
tasks to UAVs based on mission requirements. Pinciroli and Beltrame
(2016) introduced Buzz, a language designed for large-scale, hetero-
geneous robot clusters. While programming-like languages are highly
expressive and feature-rich, they are not ideal for rapid deployment in
dynamic environments.

M. Zhang et al.

The Journal of Systems & Software 226 (2025) 112416
Declarative markup language: In the aviation sector, XML has
increasingly become the standard for data exchange, particularly in the
SESAR air traffic management modernization program across Europe
and the United States (SESAR Joint Undertaking et al., 2019). Conse-
quently, declarative markup languages for task description are predom-
inantly implemented using extensible markup language (XML) (Bray
et al., 1997). Doherty et al. (2010) developed a task specification lan-
guage based on Task Specification Trees (TST), which was applied to
UAV collaborative systems. Additionally, Bozhinoski et al. (2015) intro-
duced domain-specific languages for drone swarms, such as the Mon-
itoring Missions Language (MML) and Quadrotor Behavior Language
(QBL).

Silva et al. (2014) created a set of languages for describing multi-
robot tasks, including the XML-based Mission Description Language
(MDL). MDL focuses on specifying mission areas, actions, sequences,
time constraints, and UAV requirements. To address potential disrup-
tions in multi-robot tasks, such as human or environmental interfer-
ence, Silva et al. (2016) later introduced the Disturbance Description
Language (DDL). Additionally, Castro Silva et al. (2017) proposed two
more XML-based languages: Scenario Description Language (SDL) and
Team Description Language (TDL), which serve as static representations
of scene and task knowledge. SDL defines the physical environment and
global operational constraints, while TDL outlines vehicle teams and
their specific constraints. To accommodate the demands of UAV swarms
in
multi-task scenarios, Jia Jia et al. (2022) developed a UAV swarm mis-
sion model for dynamic tasks across various environments and intro-
duced the XML-based Group Mission Language (GML) for cluster task
descriptions. Moreover, Zhao et al. (2024) proposed SL4U, a UAV swarm
description language that categorizes UAV scenarios into environments
and tasks. Although declarative markup languages offer excellent read-
ability, they tend to be less adaptable across different platforms and
application areas.

Graphical interface: Graphical interface tools are often used to de-
fine drone missions and create basic flight plans, such as setting way-
points for a drone to follow a predetermined route. UAV manufacturers
like Parrot and DJI have developed proprietary graphical tools (Gloss-
ner et al., 2021), but these tools are limited to their own products
and are incompatible with drones from other brands. For more com-
plex mission planning, FlyMASTER (Lamping et al., 2018) offers a soft-
ware platform aimed at researchers working on UAV swarm systems,
enabling rapid development, flexible integration, and use. However,
its technical complexity makes it accessible mainly to domain experts,
with limited usability for non-technical users. Ruscio et al. (2016) intro-
duced MML, a monitoring task language designed for non-experts, and
implemented FLYAQ, a platform with a graphical interface for defining
monitoring tasks. Nevertheless, FLYAQ lacks features such as automatic
detection of regions with complex geometries and the ability to vi-
sualize or plan three-dimensional flight paths (Besada et al., 2018).
To address these limitations, Besada et al. (2018) developed a mis-
sion definition system that supports both pre-flight mission visualiza-
tion and trajectory prediction. Although graphical interfaces provide
intuitive and user-friendly interaction, they are often tightly coupled
with specific applications and can be difficult to adapt for other use
cases.

While these tools demonstrate excellent performance in specific ap-
plications, they are often tightly coupled with their original contexts,
which limits their flexibility in adapting to diverse usage scenarios and
requirements. This constraint becomes evident when addressing com-
plex and dynamic task demands. Furthermore, the necessity to manage
numerous intricate data interactions and support various file formats
adversely affects their performance and efficiency. In contrast, our pro-
posed task description language is designed with dynamic expressive-
ness, empowering UAV swarms to respond effectively to emergencies
and navigate diverse operational contexts.
17
7. Conclusion

In order to accurately describe UAV swarm application scenarios,
we propose a modeling method based on meta-level theory. We charac-
terize UAV application scenarios with mission, resource, and constraint
models. Furthermore, to formally represent the proposed modeling ap-
proach, we construct and implement an Application Scenario Modeling
Language (ASML). ASML refers to the description method of extensible
markup language XML and defines the corresponding lexical and BNF
syntax rules. ASML can be further converted into timed automata to
verify its correctness. We verify the reliability of the proposed modeling
method in a logistics handling scenario.

CRediT authorship contribution statement

Manqing Zhang: Writing – original draft, Conceptualization. Yun-
wei Dong: Supervision, Methodology, Funding acquisition. Tao Zhang:
Writing – review & editing. Kang Su: Software, Formal analysis. Ze-
shan Li: Resources, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgment

This work was supported by the National Key R&D Program of China
under the grant number 2022YFB4501800.

Data availability

No data was used for the research described in the article.

References

Arnold, R., Jablonski, J., Abruzzo, B., Mezzacappa, E., 2020. Heterogeneous UAV multi-
role swarming behaviors for search and rescue. In: 2020 IEEE Conference on
Cognitive and Computational Aspects of Situation Management. CogSIMA, IEEE,
pp. 122–128.

Besada, J.A., Bergesio, L., Campaña, I., Vaquero-Melchor, D., López-Araquistain, J.,
Bernardos, A.M., Casar, J.R., 2018. Drone mission definition and implementation
for automated infrastructure inspection using airborne sensors. Sensors 18 (4),
1170.

Bozhinoski, D., Di Ruscio, D., Malavolta, I., Pelliccione, P., Tivoli, M., 2015. Flyaq:
Enabling non-expert users to specify and generate missions of autonomous multi-
copters. In: 2015 30th IEEE/ACM International Conference on Automated Software
Engineering. ASE, IEEE, pp. 801–806.

Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., 1997. Extensible
markup language (XML). World Wide Web J. 2 (4), 27–66.

Brumitt, B.L., Stentz, A., 1998. GRAMMPS: A generalized mission planner for multiple
mobile robots in unstructured environments. In: Proceedings. 1998 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 98CH36146), Vol. 2. IEEE,
pp. 1564–1571.

Castro Silva, D., Henriques Abreu, P., Reis, L.P., Oliveira, E., 2017. Development of
flexible languages for scenario and team description in multirobot missions. AI
EDAM 31 (1), 69–86.

Dantu, K., Kate, B., Waterman, J., Bailis, P., Welsh, M., 2011. Programming micro-
aerial vehicle swarms with karma. In: Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems. pp. 121–134.

Dedousis, D., Kalogeraki, V., 2018. A framework for programming a swarm of UAVs. In:
Proceedings of the 11th Pervasive Technologies Related To Assistive Environments
Conference. pp. 5–12.

Doherty, P., Heintz, F., Landén, D., 2010. A distributed task specification language for
mixed-initiative delegation. In: International Conference on Principles and Practice
of Multi-Agent Systems. Springer, pp. 42–57.

Fowler, M., 2010. Domain-Specific Languages. Pearson Education.
Glossner, J., Murphy, S., Iancu, D., 2021. An overview of the drone open-source

ecosystem. arXiv preprint arXiv:2110.02260.

http://refhub.elsevier.com/S0164-1212(25)00084-6/sb1
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb1
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb1
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb1
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb1
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb1
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb1
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb2
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb2
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb2
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb2
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb2
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb2
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb2
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb3
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb3
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb3
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb3
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb3
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb3
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb3
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb4
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb4
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb4
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb5
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb5
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb5
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb5
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb5
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb5
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb5
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb6
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb6
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb6
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb6
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb6
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb7
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb7
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb7
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb7
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb7
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb8
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb8
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb8
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb8
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb8
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb9
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb9
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb9
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb9
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb9
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb10
http://arxiv.org/abs/2110.02260

M. Zhang et al. The Journal of Systems & Software 226 (2025) 112416
Javaid, S., Saeed, N., Qadir, Z., Fahim, H., He, B., Song, H., Bilal, M., 2023.
Communication and control in collaborative UAVs: Recent advances and future
trends. IEEE Trans. Intell. Transp. Syst..

Jia, W., Ni, J., Yang, G., Wang, R., Yao, Y., Wu, W., 2022. Design and implementation of
task description language for UAV swarms. In: 2022 IEEE International Conference
on Unmanned Systems. ICUS, IEEE, pp. 158–164.

Khan, N.A., Jhanjhi, N., Brohi, S.N., Usmani, R.S.A., Nayyar, A., 2020. Smart traffic
monitoring system using unmanned aerial vehicles (UAVs). Comput. Commun. 157,
434–443.

Kölbl, M., Leue, S., Wies, T., 2020. Tartar: A timed automata repair tool. In: Computer
Aided Verification: 32nd International Conference, CAV 2020, Los Angeles, CA,
USA, July 21–24, 2020, Proceedings, Part I 32. Springer, pp. 529–540.

Konolige, K., 1997. Colbert: A language for reactive control in sapphira. In: KI-97:
Advances in Artificial Intelligence: 21st Annual German Conference on Artificial
Intelligence Freiburg, Germany, September 9–12, 1997 Proceedings 21. Springer,
pp. 31–52.

Kühne, T., 2006. Matters of (meta-) modeling. Softw. Syst. Model. 5, 369–385.
Lamping, A.P., Ouwerkerk, J.N., Cohen, K., 2018. Multi-UAV control and supervision

with ROS. In: 2018 Aviation Technology, Integration, and Operations Conference.
p. 4245.

Lan, M., Xu, Y., Lai, S., Chen, B.M., 2018. A modular mission management system for
micro aerial vehicles. In: 2018 IEEE 14th International Conference on Control and
Automation. ICCA, IEEE, pp. 293–299.

Li, G.-Y., Soong, R.-T., Liu, J.-S., Huang, Y.-T., 2019. UAV system integration of
real-time sensing and flight task control for autonomous building inspection task.
In: 2019 International Conference on Technologies and Applications of Artificial
Intelligence. TAAI, IEEE, pp. 1–6.

Lomonaco, V., Trotta, A., Ziosi, M., Avila, J.D.D.Y., Díaz-Rodríguez, N., 2018. Intelligent
drone swarm for search and rescue operations at sea. arXiv preprint arXiv:1811.
05291.

Merino, L., Caballero, F., Martinez-de Dios, J., Ollero, A., 2005. Cooperative fire
detection using unmanned aerial vehicles. In: Proceedings of the 2005 IEEE
International Conference on Robotics and Automation. IEEE, pp. 1884–1889.

Molina, M., Suarez-Fernandez, R.A., Sampedro, C., Sanchez-Lopez, J.L., Campoy, P.,
2017. TML: a language to specify aerial robotic missions for the framework
Aerostack. Int. J. Intell. Comput. Cybern. 10 (4), 491–512.

Mottola, L., Moretta, M., Whitehouse, K., Ghezzi, C., 2014. Team-level programming of
drone sensor networks. In: Proceedings of the 12th ACM Conference on Embedded
Network Sensor Systems. pp. 177–190.

Parton, K., McKeown, K., Coyne, R.E., Diab, M.T., Grishman, R., Hakkani-Tür, D.,
Harper, M., Ji, H., Ma, W.Y., Meyers, A., et al., 2009. Who, what, when, where,
why? comparing multiple approaches to the cross-lingual 5W task.

Pinciroli, C., Beltrame, G., 2016. Buzz: An extensible programming language for
heterogeneous swarm robotics. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IROS, IEEE, pp. 3794–3800.

Renliang, W., 2024. Application scenario modeling language. https://github.com/
PiedPiper911/ASML.

Ruscio, D.D., Malavolta, I., Pelliccione, P., Tivoli, M., 2016. Automatic generation of
detailed flight plans from high-level mission descriptions. In: Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Languages
and Systems. pp. 45–55.

SESAR Joint Undertaking, et al., 2019. SESAR joint undertaking: single programming
document 2020–2022. EU: European Union.

Silva, D.C., Abreu, P.H., Reis, L.P., Oliveira, E., 2014. Development of a flexible
language for mission description for multi-robot missions. Inform. Sci. 288, 27–44.

Silva, D.C., Abreu, P.H., Reis, L.P., Oliveira, E., 2016. Development of a flexible
language for disturbance description for multi-robot missions. J. Simul. 10 (3),
166–181.
18
Tousignant, S., Van Wyk, E., Gini, M., 2012. Xrobots: A flexible language for
programming mobile robots based on hierarchical state machines. In: 2012 IEEE
International Conference on Robotics and Automation. IEEE, pp. 1773–1778.

Wen, J., He, L., Zhu, F., 2018. Swarm robotics control and communications: Imminent
challenges for next generation smart logistics. IEEE Commun. Mag. 56 (7),
102–107.

Wenxiu, P., 2015. Analysis of new media communication based on Lasswell’s ‘‘5w’’
model. J. Educ. Soc. Res. 5 (3), 245–250.

Wu, X., Liu, Y., Xie, S., Guo, Y., 2020. Collaborative defense with multiple USVs and
UAVs based on swarm intelligence. J. Shanghai Jiaotong Univ. (Science) 25, 51–56.

Yang, L., Hu, Z., Long, J., Guo, T., 2011. 5W1H-based conceptual modeling framework
for domain ontology and its application on STPO. In: 2011 Seventh International
Conference on Semantics, Knowledge and Grids. IEEE, pp. 203–206.

Yu, Y., Bi, Y., 2010. A study on ‘‘5w1h’’ user analysis on interaction design of interface.
In: 2010 IEEE 11th International Conference on Computer-Aided Industrial Design
& Conceptual Design 1, Vol. 1. IEEE, pp. 329–332.

Zhao, Y., Yao, Y., He, T., Zhou, X., Shen, B., 2024. Sl4u: a scenario description language
for unmanned swarm. J. Supercomput. 80 (4), 5363–5389.

Zhong, Y., Ye, S., Liu, Y., Li, J., 2023. A route planning method for UAV swarm
inspection of roads fusing distributed droneport site selection. Sensors 23 (20),
8479.

Zhou, Y., Rao, B., Wang, W., 2020. UAV swarm intelligence: Recent advances and
future trends. Ieee Access 8, 183856–183878.

Manqing Zhang received the master’s degree from Northwestern Polytechnical Univer-
sity, China. He is currently a Ph.D. student with the School of Software, Northwestern
Polytechnical University. His research interests include formal verification, program
synthesis.

Yunwei Dong received the doctor’s degree from Northwestern University, China. His re-
search interests include embedded systems, information-physical convergence systems,
trusted software design and verification, and intelligent software engineering.

Tao Zhang received the B.S. degree in automation, the M.Eng. degree in software
engineering from Northeastern University, China, and the Ph.D. degree in computer
science from the University of Seoul, South Korea. After that, he spent one year with
the Hong Kong Polytechnic University as a postdoctoral research fellow. Currently,
he is an associate professor with the School of Computer Science and Engineering,
Macau University of Science and Technology (MUST). Before joining MUST, he was
the faculty member of Harbin Engineering University and Nanjing University of Posts
and Telecommunications, China. He is a senior member of IEEE and ACM.

Kang Su received the bachelor’s degree from Northwestern Polytechnical University,
China. He is currently a master student with the School of Software, Northwestern
Polytechnical University. His research interests include formal verification and software
engineering.

Zeshan Li received the bachelor’s degree from Northwestern University, China. He
is currently a master student with the School of Software, Northwestern Polytech-
nical University. His research interests include reinforcement learning and software
engineering.

http://refhub.elsevier.com/S0164-1212(25)00084-6/sb12
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb12
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb12
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb12
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb12
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb13
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb13
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb13
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb13
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb13
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb14
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb14
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb14
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb14
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb14
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb15
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb15
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb15
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb15
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb15
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb16
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb16
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb16
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb16
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb16
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb16
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb16
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb17
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb18
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb18
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb18
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb18
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb18
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb19
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb19
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb19
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb19
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb19
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb20
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb20
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb20
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb20
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb20
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb20
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb20
http://arxiv.org/abs/1811.05291
http://arxiv.org/abs/1811.05291
http://arxiv.org/abs/1811.05291
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb22
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb22
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb22
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb22
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb22
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb23
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb23
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb23
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb23
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb23
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb24
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb24
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb24
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb24
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb24
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb25
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb25
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb25
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb25
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb25
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb26
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb26
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb26
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb26
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb26
https://github.com/PiedPiper911/ASML
https://github.com/PiedPiper911/ASML
https://github.com/PiedPiper911/ASML
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb28
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb28
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb28
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb28
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb28
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb28
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb28
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb29
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb29
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb29
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb30
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb30
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb30
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb31
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb31
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb31
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb31
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb31
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb32
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb32
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb32
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb32
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb32
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb33
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb33
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb33
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb33
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb33
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb34
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb34
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb34
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb35
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb35
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb35
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb36
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb36
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb36
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb36
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb36
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb37
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb37
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb37
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb37
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb37
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb38
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb38
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb38
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb39
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb39
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb39
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb39
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb39
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb40
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb40
http://refhub.elsevier.com/S0164-1212(25)00084-6/sb40

	Modeling and verifying resources and capabilities of ubiquitous scenarios for Unmanned Aerial Vehicle swarm
	Introduction
	Background
	Timed Automata
	UPPAAL Toolbox

	Modeling method
	Overview
	Mission Meta-Model
	Resource Meta-Model
	Constraint Meta-Model
	Application Scenario Modeling Language
	Lexical rules
	Syntax rules

	Parse model

	Verification Method
	Scenario Element Extraction
	Transformation rules for timed automata
	Model transformation rules
	Synchronization Rules for Timed Automata.

	Property Extraction and Verification with UPPAAL

	Case Study
	Highway Inspection Scenarios
	Language Comparison
	Mission
	Resource
	Constraint

	Experiment platform and result
	Verification
	UPPAAL Models
	Task Timed Automata
	Drone Timed Automata
	Constraint Timed Automata
	Property verification

	Related work
	Single UAV mission description
	UAV swarm mission description

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

